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Preface
View the promotional video on YouTube

These are my lecture notes for my online Coursera course, Matrix Algebra for Engineers.
I have divided these notes into chapters called Lectures, with each Lecture corresponding
to a video on Coursera. I have also uploaded all my Coursera videos to YouTube, and
links are placed at the top of each Lecture.

There are problems at the end of each lecture chapter and I have tried to choose prob-
lems that exemplify the main idea of the lecture. Students taking a formal university
course in matrix or linear algebra will usually be assigned many more additional prob-
lems, but here I follow the philosophy that less is more. I give enough problems for
students to solidify their understanding of the material, but not too many problems that
students feel overwhelmed and drop out. I do encourage students to attempt the given
problems, but if they get stuck, full solutions can be found in the Appendix.

There are also additional problems at the end of coherent sections that are given as
practice quizzes on the Coursera platform. Again, students should attempt these quizzes
on the platform, but if a student has trouble obtaining a correct answer, full solutions are
also found in the Appendix.

The mathematics in this matrix algebra course is at the level of an advanced high school
student, but typically students would take this course after completing a university-level
single variable calculus course. There are no derivatives and integrals in this course, but
student’s are expected to have a certain level of mathematical maturity. Nevertheless,
anyone who wants to learn the basics of matrix algebra is welcome to join.

Jeffrey R. Chasnov

Hong Kong
July 2018

https://www.youtube.com/watch?v=IZcyZHomFQc&list=PLkZjai-2Jcxlg-Z1roB0pUwFU-P58tvOx&index=2&t=16s
https://www.coursera.org/learn/matrix-algebra-engineers
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Week I

Matrices

In this week’s lectures, we learn about matrices. Matrices are rectangular arrays of numbers
or other mathematical objects and are fundamental to engineering mathematics. We will define
matrices and how to add and multiply them, discuss some special matrices such as the identity and
zero matrix, learn about transposes and inverses, and define orthogonal and permutation matrices.
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Lecture 1 | Definition of a matrix
View this lecture on YouTube

An m-by-n matrix is a rectangular array of numbers (or other mathematical objects) with
m rows and n columns. For example, a two-by-two matrix A, with two rows and two
columns, looks like

A =

(
a b
c d

)
.

The first row has elements a and b, the second row has elements c and d. The first column
has elements a and c; the second column has elements b and d. As further examples,
two-by-three and three-by-two matrices look like

B =

(
a b c
d e f

)
, C =

a d
b e
c f

 .

Of special importance are column matrices and row matrices. These matrices are also
called vectors. The column vector is in general n-by-one and the row vector is one-by-n.
For example, when n = 3, we would write a column vector as

x =

a
b
c

 ,

and a row vector as
y =

(
a b c

)
.

A useful notation for writing a general m-by-n matrix A is

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 .

Here, the matrix element of A in the ith row and the jth column is denoted as aij.
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WEEK I. MATRICES 3

Problems for Lecture 1

1. The diagonal of a matrix A are the entries aij where i = j.

a) Write down the three-by-three matrix with ones on the diagonal and zeros else-
where.

b) Write down the three-by-four matrix with ones on the diagonal and zeros elsewhere.

c) Write down the four-by-three matrix with ones on the diagonal and zeros elsewhere.

Solutions to the Problems



Lecture 2 | Addition and multipli-
cation of matrices

View this lecture on YouTube

Matrices can be added only if they have the same dimension. Addition proceeds element
by element. For example,(

a b
c d

)
+

(
e f
g h

)
=

(
a + e b + f
c + g d + h

)
.

Matrices can also be multiplied by a scalar. The rule is to just multiply every element of
the matrix. For example,

k

(
a b
c d

)
=

(
ka kb
kc kd

)
.

Matrices (other than the scalar) can be multiplied only if the number of columns of the
left matrix equals the number of rows of the right matrix. In other words, an m-by-n
matrix on the left can only be multiplied by an n-by-k matrix on the right. The resulting
matrix will be m-by-k. Evidently, matrix multiplication is generally not commutative. We
illustrate multiplication using two 2-by-2 matrices:(

a b
c d

)(
e f
g h

)
=

(
ae + bg a f + bh
ce + dg c f + dh

)
,

(
e f
g h

)(
a b
c d

)
=

(
ae + c f be + d f
ag + ch bg + dh

)
.

First, the first row of the left matrix is multiplied against and summed with the first
column of the right matrix to obtain the element in the first row and first column of the
product matrix. Second, the first row is multiplied against and summed with the second
column. Third, the second row is multiplied against and summed with the first column.
And fourth, the second row is multiplied against and summed with the second column.

In general, an element in the resulting product matrix, say in row i and column j, is
obtained by multiplying and summing the elements in row i of the left matrix with the
elements in column j of the right matrix. We can formally write matrix multiplication in
terms of the matrix elements. Let A be an m-by-n matrix with matrix elements aij and let
B be an n-by-p matrix with matrix elements bij. Then C = AB is an m-by-p matrix, and its
ij matrix element can be written as

cij =
n

∑
k=1

aikbkj.

Notice that the second index of a and the first index of b are summed over.
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WEEK I. MATRICES 5

Problems for Lecture 2

1. Define the matrices

A =

(
2 1 −1
1 −1 1

)
, B =

(
4 −2 1
2 −4 −2

)
, C =

(
1 2
2 1

)
,

D =

(
3 4
4 3

)
, E =

(
1
2

)
.

Compute if defined: B − 2A, 3C − E, AC, CD, CB.

2. Let A =

(
1 2
2 4

)
, B =

(
2 1
1 3

)
and C =

(
4 3
0 2

)
. Verify that AB = AC and yet B ̸= C.

3. Let A =

1 1 1
1 2 3
1 3 4

 and D =

2 0 0
0 3 0
0 0 4

. Compute AD and DA.

4. Prove the associative law for matrix multiplication. That is, let A be an m-by-n matrix,
B an n-by-p matrix, and C a p-by-q matrix. Then prove that A(BC) = (AB)C.

Solutions to the Problems



Lecture 3 | Special matrices
View this lecture on YouTube

The zero matrix, denoted by 0, can be any size and is a matrix consisting of all zero
elements. Multiplication by a zero matrix results in a zero matrix. The identity matrix,
denoted by I, is a square matrix (number of rows equals number of columns) with ones
down the main diagonal. If A and I are the same sized square matrices, then

AI = IA = A,

and multiplication by the identity matrix leaves the matrix unchanged. The zero and
identity matrices play the role of the numbers zero and one in matrix multiplication. For
example, the two-by-two zero and identity matrices are given by

0 =

(
0 0
0 0

)
, I =

(
1 0
0 1

)
.

A diagonal matrix has its only nonzero elements on the diagonal. For example, a two-by-
two diagonal matrix is given by

D =

(
d1 0
0 d2

)
.

Usually, diagonal matrices refer to square matrices, but they can also be rectangular.
A band (or banded) matrix has nonzero elements only on diagonal bands. For ex-

ample, a three-by-three band matrix with nonzero diagonals one above and one below a
nonzero main diagonal (called a tridiagonal matrix) is given by

B =

d1 a1 0
b1 d2 a2

0 b2 d3

 .

An upper or lower triangular matrix is a square matrix that has zero elements below or
above the diagonal. For example, three-by-three upper and lower triangular matrices are
given by

U =

a b c
0 d e
0 0 f

 , L =

a 0 0
b d 0
c e f

 .
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WEEK I. MATRICES 7

Problems for Lecture 3

1. Let

A =

(
−1 2

4 −8

)
.

Construct a two-by-two matrix B such that AB is the zero matrix. Use two different
nonzero columns for B.

2. Verify that (
a1 0
0 a2

)(
b1 0
0 b2

)
=

(
a1b1 0

0 a2b2

)
.

Prove in general that the product of two diagonal matrices is a diagonal matrix, with
elements given by the product of the diagonal elements.

3. Verify that (
a1 a2

0 a3

)(
b1 b2

0 b3

)
=

(
a1b1 a1b2 + a2b3

0 a3b3

)
.

Prove in general that the product of two upper triangular matrices is an upper triangular
matrix, with the diagonal elements of the product given by the product of the diagonal
elements.

Solutions to the Problems



Practice Quiz | Matrix definitions
1. Identify the two-by-two matrix with matrix elements aij = i − j.

a)

(
1 0
0 −1

)

b)

(
−1 0

0 1

)

c)

(
0 1

−1 0

)

d)

(
0 −1
1 0

)

2. The matrix product

(
1 −1

−1 1

)(
−1 1

1 −1

)
is equal to

a)

(
−2 2

2 −2

)

b)

(
2 −2

−2 2

)

c)

(
−2 2
−2 2

)

d)

(
−2 −2

2 2

)
3. Let A and B be n-by-n matrices with (AB)ij = ∑n

k=1 aikbkj. If A and B are upper trian-
gular matrices, then aik = 0 or bkj = 0 when

A. k < i B. k > i C. k < j D. k > j

a) A and C only

b) A and D only

c) B and C only

d) B and D only

Solutions to the Practice quiz
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Lecture 4 | Transpose matrix
View this lecture on YouTube

The transpose of a matrix A, denoted by AT and spoken as A-transpose, switches the
rows and columns of A. That is,

if A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 , then AT =


a11 a21 · · · am1

a12 a22 · · · am2
...

...
. . .

...
a1n a2n · · · amn

 .

In other words, we write
aT

ij = aji.

Evidently, if A is m-by-n then AT is n-by-m. As a simple example, view the following
transpose pair: a d

b e
c f


T

=

(
a b c
d e f

)
.

The following are useful and easy to prove facts:

(
AT
)T

= A, and (A + B)T = AT + BT.

A less obvious fact is that the transpose of the product of matrices is equal to the product
of the transposes with the order of multiplication reversed, i.e.,

(AB)T = BTAT.

If A is a square matrix, and AT = A, then we say that A is symmetric. If AT = −A, then we
say that A is skew symmetric. For example, three-by-three symmetric and skew symmetric
matrices look like  a b c

b d e
c e f

 ,

 0 b c
−b 0 e
−c −e 0

 .

Notice that the diagonal elements of a skew-symmetric matrix must be zero.
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WEEK I. MATRICES 10

Problems for Lecture 4

1. Prove that (AB)T = BTAT.

2. Show using the transpose operator that any square matrix A can be written as the sum
of a symmetric and a skew-symmetric matrix.

3. Prove that ATA is symmetric.

Solutions to the Problems



Lecture 5 | Inner and outer
products

View this lecture on YouTube

The inner product (or dot product or scalar product) between two vectors is obtained from
the matrix product of a row vector times a column vector. A row vector can be obtained
from a column vector by the transpose operator. With the 3-by-1 column vectors u and v,
their inner product is given by

uTv =
(

u1 u2 u3

)v1

v2

v3

 = u1v1 + u2v2 + u3v3.

If the inner product between two nonzero vectors is zero, we say that the vectors are
orthogonal. The norm of a vector is defined by

||u|| =
(

uTu
)1/2

=
(

u2
1 + u2

2 + u2
3

)1/2
.

If the norm of a vector is equal to one, we say that the vector is normalized. If a set of vectors
are mutually orthogonal and normalized, we say that these vectors are orthonormal.

An outer product is also defined, and is used in some applications. The outer product
between u and v is given by

uvT =

u1

u2

u3

(v1 v2 v3

)
=

u1v1 u1v2 u1v3

u2v1 u2v2 u2v3

u3v1 u3v2 u3v3

 .

Notice that every column is a multiple of the single vector u, and every row is a multiple
of the single vector vT.
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WEEK I. MATRICES 12

Problems for Lecture 5

1. Let A be a rectangular matrix given by A =

a d
b e
c f

 . Compute ATA and show that it

is a symmetric square matrix. Observe that the sum of the diagonal elements of ATA is
the sum of the squares of all the elements of A.

2. The trace of a square matrix B, denoted as Tr B, is the sum of the diagonal elements of
B. Prove that Tr(ATA) is the sum of the squares of all the elements of A.

Solutions to the Problems



Lecture 6 | Inverse matrix
View this lecture on YouTube

Square matrices may have inverses. When a matrix A has an inverse, we say it is in-
vertible and denote its inverse by A−1. The inverse matrix satisfies

AA−1 = A−1A = I.

If A and B are invertible matrices, then (AB)−1 = B−1A−1. Furthermore, if A is invertible
then so is AT, and (AT)−1 = (A−1)T.

It is illuminating to derive the inverse of a general 2-by-2 matrix. Write(
a b
c d

)(
x1 x2

y1 y2

)
=

(
1 0
0 1

)
,

and try to solve for x1, y1, x2 and y2 in terms of a, b, c, and d. There are two inhomoge-
neous and two homogeneous linear equations:

ax1 + by1 = 1, cx1 + dy1 = 0,

cx2 + dy2 = 1, ax2 + by2 = 0.

To solve, we can eliminate y1 and y2 using the two homogeneous equations, and find x1

and x2 using the two inhomogeneous equations. The solution for the inverse matrix is
found to be (

a b
c d

)−1

=
1

ad − bc

(
d −b

−c a

)
.

The term ad − bc is just the definition of the determinant of the two-by-two matrix:

det

(
a b
c d

)
= ad − bc.

The determinant of a two-by-two matrix is the product of the diagonals minus the prod-
uct of the off-diagonals. Evidently, a two-by-two matrix A is invertible only if det A ̸= 0.
Notice that the inverse of a two-by-two matrix, in words, is found by switching the di-
agonal elements of the matrix, negating the off-diagonal elements, and dividing by the
determinant.

Later, we will show that an n-by-n matrix is invertible if and only if its determinant is
nonzero. This will require a more general definition of the determinant.
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Problems for Lecture 6

1. Find the inverses of the matrices

(
5 6
4 5

)
and

(
6 4
3 3

)
.

2. Prove that if A and B are same-sized invertible matrices , then (AB)−1 = B−1A−1.

3. Prove that if A is invertible then so is AT, and (AT)−1 = (A−1)T.

4. Prove that if a matrix is invertible, then its inverse is unique.

5. Consider the parallelogram constructed by the two lines drawn from the origin to the
points (a, b) and (c, d), as drawn in the figure.

Show that the area of the parallelogram is given by the absolute value of the determinant

Area =

∣∣∣∣∣det

(
a b
c d

)∣∣∣∣∣ .

Solutions to the Problems



Practice Quiz | Transpose and
inverse

1. (ABC)T is equal to

a) ATBTCT

b) ATCTBT

c) CTATBT

d) CTBTAT

2. Suppose A is a square matrix. Which matrix is not symmetric?

a) A + AT

b) AAT

c) A − AT

d) ATA

3. Which matrix is the inverse of

(
2 2
1 2

)
?

a)
1
2

(
2 −2

−1 2

)

b)
1
2

(
−2 2

1 −2

)

c)
1
2

(
2 2

−1 −2

)

d)
1
2

(
−2 −2

1 2

)

Solutions to the Practice quiz
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Lecture 7 | Orthogonal matrices
View this lecture on YouTube

A square matrix Q with real entries that satisfies

Q−1 = QT

is called an orthogonal matrix. Another way to write this definition is

QQT = I and QTQ = I.

We can more easily understand orthogonal matrices by examining a general two-by-two
example. Let Q be the orthogonal matrix given by

Q =

(
q11 q12

q21 q22

)
=
(

q1 q2

)
,

where q1 and q2 are the two-by-one column vectors of the matrix Q. Then

QTQ =

(
qT

1

qT
2

)(
q1 q2

)
=

(
qT

1 q1 qT
1 q2

qT
2 q1 qT

2 q2

)
.

If Q is orthogonal, then QTQ = I and

qT
1 q1 = qT

2 q2 = 1 and qT
1 q2 = qT

2 q1 = 0.

That is, the columns of Q form an orthonormal set of vectors. The same argument can
also be made for the rows of Q.

Therefore, an equivalent definition of an orthogonal matrix is a square matrix with
real entries whose columns (and also rows) form a set of orthonormal vectors.

There is a third equivalent definition of an orthogonal matrix. Let Q be an n-by-n
orthogonal matrix, and let x be an n-by-one column vector. Then the length squared of
the vector Qx is given by

||Qx||2 = (Qx)T (Qx) = xTQTQx = xTIx = xTx = ||x||2.

The length of Qx is therefore equal to the length of x, and we say that an orthogonal
matrix is a matrix that preserves lengths. In the next lecture, an example of an orthogonal
matrix will be the matrix that rotates a two-dimensional vector in the plane.

16
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WEEK I. MATRICES 17

Problems for Lecture 7

1. Show that the product of two orthogonal matrices is orthogonal.

2. Show that the n-by-n identity matrix is orthogonal.

Solutions to the Problems



Lecture 8 | Rotation matrices
View this lecture on YouTube

Rotating a vector in the x-y plane.

A matrix that rotates a vector in space doesn’t change the vector’s length and so should
be an orthogonal matrix. Consider the two-by-two rotation matrix that rotates a vector
counterclockwise through an angle θ in the x-y plane, shown above. Trigonometry and
the addition formula for cosine and sine results in

x′ = r cos (θ + ψ) y′ = r sin (θ + ψ)

= r(cos θ cos ψ − sin θ sin ψ) = r(sin θ cos ψ + cos θ sin ψ)

= x cos θ − y sin θ = x sin θ + y cos θ.

Writing the equations for x′ and y′ in matrix form, we have(
x′

y′

)
=

(
cos θ − sin θ

sin θ cos θ

)(
x
y

)
.

The above two-by-two matrix is a rotation matrix and we will denote it by Rθ . Observe
that the rows and columns of Rθ are orthonormal and that the inverse of Rθ is just its
transpose. The inverse of Rθ rotates a vector by −θ.

18
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WEEK I. MATRICES 19

Problems for Lecture 8

1. Let R(θ) =

(
cos θ − sin θ

sin θ cos θ

)
. Show that R(−θ) = R(θ)−1.

2. Find the three-by-three matrix that rotates a three-dimensional vector an angle θ coun-
terclockwise around the z-axis.

Solutions to the Problems



Lecture 9 | Permutation matrices
View this lecture on YouTube

Another type of orthogonal matrix is a permutation matrix. A permutation matrix, when
multiplying on the left, permutes the rows of a matrix, and when multiplying on the right,
permutes the columns. Clearly, permuting the rows of a column vector will not change
its length.

For example, let the string {1, 2} represent the order of the rows of a two-by-two
matrix. Then the two possible permutations of the rows are given by {1, 2} and {2, 1}.
The first permutation is no permutation at all, and the corresponding permutation matrix
is simply the identity matrix. The second permutation of the rows is achieved by(

0 1
1 0

)(
a b
c d

)
=

(
c d
a b

)
.

The rows of a three-by-three matrix have 3! = 6 possible permutations, namely {1, 2, 3},
{1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2}, {3, 2, 1}. For example, the row permutation {3, 1, 2} is
achieved by 0 0 1

1 0 0
0 1 0


a b c

d e f
g h i

 =

g h i
a b c
d e f

 .

Notice that the permutation matrix is obtained by permuting the corresponding rows of
the identity matrix, with the rows of the identity matrix permuted as {1, 2, 3} → {3, 1, 2}.
That a permutation matrix is just a row-permuted identity matix is made evident by
writing

PA = (PI)A,

where P is a permutation matrix and PI is the identity matrix with permuted rows. The
identity matrix is orthogonal, and so is the permutation matrix obtained by permuting
the rows of the identity matrix.

20
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Problems for Lecture 9

1. Write down the six three-by-three permutation matrices corresponding to the permu-
tations {1, 2, 3}, {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2}, {3, 2, 1}.

2. Determine the inverses of all three-by-three permutation matrices, considering that the
inverse of a permutation matrix reverses the original permutation. Explain why certain
matrices are their own inverses, while others are not.

Solutions to the Problems



Practice Quiz | Orthogonal
matrices

1. Which matrix is not orthogonal?

a)

(
0 1

−1 0

)

b)

(
1 0
0 −1

)

c)

(
0 1
1 0

)

d)

(
1 −1
0 0

)
2. Which matrix rotates a three-by-one column vector an angle θ counterclockwise around
the x-axis?

a)

1 0 0
0 cos θ − sin θ

0 sin θ cos θ



b)

sin θ 0 cos θ

0 1 0
cos θ 0 − sin θ



c)

cos θ − sin θ 0
sin θ cos θ 0

0 0 1



d)

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1


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3. Which matrix, when left multiplying another matrix, moves row one to row two, row
two to row three, and row three to row one?

a)

0 1 0
0 0 1
1 0 0



b)

0 0 1
1 0 0
0 1 0



c)

0 0 1
0 1 0
1 0 0



d)

1 0 0
0 0 1
0 1 0


Solutions to the Practice quiz



Week II

Systems of Linear Equations

In this week’s lectures, we learn about solving a system of linear equations. A system of linear
equations can be written in matrix form, and we can solve using Gaussian elimination. We will
learn how to bring a matrix to reduced row echelon form, and how this can be used to compute a
matrix inverse. We will also learn how to find the LU decomposition of a matrix, and how to use
this decomposition to efficiently solve a system of linear equations.
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Lecture 10 | Gaussian elimination
View this lecture on YouTube

Consider the linear system of equations given by

−3x1 + 2x2 − x3 = −1,

6x1 − 6x2 + 7x3 = −7,

3x1 − 4x2 + 4x3 = −6,

which can be written in matrix form as−3 2 −1
6 −6 7
3 −4 4


x1

x2

x3

 =

−1
−7
−6

 ,

or symbolically as Ax = b.

The standard numerical algorithm used to solve a system of linear equations is called
Gaussian elimination. We first form what is called an augmented matrix by combining the
matrix A with the column vector b:−3 2 −1 −1

6 −6 7 −7
3 −4 4 −6

 .

Row reduction is then performed on this augmented matrix. Allowed operations are (1)
interchange the order of any rows, (2) multiply any row by a constant, (3) add a multiple
of one row to another row. These three operations do not change the solution of the
original equations. The goal here is to convert the matrix A into upper-triangular form,
and then use this form to quickly solve for the unknowns x.

We start with the first row of the matrix and work our way down as follows. First we
multiply the first row by 2 and add it to the second row. Then we add the first row to the
third row, to obtain −3 2 −1 −1

0 −2 5 −9
0 −2 3 −7

 .

We then go to the second row. We multiply this row by −1 and add it to the third row to
obtain −3 2 −1 −1

0 −2 5 −9
0 0 −2 2

 .

The original matrix A has been converted to an upper triangular matrix, and the trans-
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formed equations can be determined from the augmented matrix as

−3x1 + 2x2 − x3 = −1,

−2x2 + 5x3 = −9,

−2x3 = 2.

These equations can be solved by back substitution, starting from the last equation and
working backwards. We have

x3 = −1,

x2 = −1
2
(−9 − 5x3) = 2,

x1 = −1
3
(−1 + x3 − 2x2) = 2.

We have thus found the solution x1

x2

x3

 =

 2
2

−1

 .

When performing Gaussian elimination, the matrix element that is used during the elim-
ination procedure is called the pivot. To obtain the correct multiple, one uses the pivot
as the divisor to the matrix elements below the pivot. Gaussian elimination in the way
done here will fail if the pivot is zero. If the pivot is zero, a row interchange must first be
performed.

Even if no pivots are identically zero, small values can still result in an unstable nu-
merical computation. For very large matrices solved by a computer, the solution vector
will be inaccurate unless row interchanges are made. The resulting numerical technique
is called Gaussian elimination with partial pivoting, and is usually taught in a standard
numerical analysis course.
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Problems for Lecture 10

1. Using Gaussian elimination with back substitution, solve the following two systems of
equations:

(a)

3x1 − 7x2 − 2x3 = −7,

−3x1 + 5x2 + x3 = 5,

6x1 − 4x2 = 2.

(b)

x1 − 2x2 + 3x3 = 1,

−x1 + 3x2 − x3 = −1,

2x1 − 5x2 + 5x3 = 1.

Solutions to the Problems



Lecture 11 | Reduced row echelon
form

View this lecture on YouTube

A matrix is said to be in reduced row echelon form if the first nonzero entry in every
row is a one, all the entries below and above this one are zero, and any zero rows occur
at the bottom of the matrix.

The row elimination procedure of Gaussian elimination can be continued to bring a
matrix to reduced row echelon form. We notate the reduced row echelon form of a matrix
A as rref(A). For example, consider the three-by-four matrix

A =

1 2 3 4
4 5 6 7
6 7 8 9

 .

Row elimination can proceed as1 2 3 4
4 5 6 7
6 7 8 9

→

1 2 3 4
0 −3 −6 −9
0 −5 −10 −15

→

1 2 3 4
0 1 2 3
0 1 2 3

→

1 0 −1 −2
0 1 2 3
0 0 0 0

 ;

and we therefore have

rref(A) =

1 0 −1 −2
0 1 2 3
0 0 0 0

 .

We say that the matrix A has two pivot columns, that is, two columns that contain a pivot
position with a one in the reduced row echelon form.

Note that rows may need to be exchanged when computing the reduced row echelon
form. Also, the reduced row echelon form of a matrix A is unique, and if A is a square
invertible matrix, then rref(A) is the identity matrix.
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Problems for Lecture 11

1. Put the following matrices into reduced row echelon form and state which columns are
pivot columns:

(a)

A =

 3 −7 −2 −7
−3 5 1 5

6 −4 0 2


(b)

A =

1 2 1
2 4 1
3 6 2


Solutions to the Problems



Lecture 12 | Computing inverses
View this lecture on YouTube

By bringing an invertible matrix to reduced row echelon form, that is, to the identity
matrix, we can compute the matrix inverse. Given a matrix A, consider the equation

AA−1 = I,

for the unknown inverse A−1. Let the columns of A−1 be given by the vectors a−1
1 , a−1

2 ,
and so on. And let the columns of the identity matrix I be given by e1, e2, and so on. The
matrix A multiplying the ith column of A−1 is the equation

Aa−1
i = ei,

where ei is the ith column of the identity matrix.
This equation for the unknown columns of A−1 suggests that we can perform row

reduction on an augmented matrix which attaches the n-by-n identity matrix to the n-by-
n matrix A. To find A−1, elimination is continued until one obtains rref(A) = I.

We illustrate below:−3 2 −1 1 0 0
6 −6 7 0 1 0
3 −4 4 0 0 1

→

−3 2 −1 1 0 0
0 −2 5 2 1 0
0 −2 3 1 0 1

→

−3 2 −1 1 0 0
0 −2 5 2 1 0
0 0 −2 −1 −1 1

→

−3 0 4 3 1 0
0 −2 5 2 1 0
0 0 −2 −1 −1 1

→

−3 0 0 1 −1 2
0 −2 0 −1/2 −3/2 5/2
0 0 −2 −1 −1 1

→

 1 0 0 −1/3 1/3 −2/3
0 1 0 1/4 3/4 −5/4
0 0 1 1/2 1/2 −1/2

 ;

and one can check that−3 2 −1
6 −6 7
3 −4 4


−1/3 1/3 −2/3

1/4 3/4 −5/4
1/2 1/2 −1/2

 =

1 0 0
0 1 0
0 0 1

 .
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Problems for Lecture 12

1. Compute the inverse of  3 −7 −2
−3 5 1

6 −4 0

 .

Solutions to the Problems



Practice Quiz | Gaussian
elimination

1. Perform Gaussian elimination without row interchange on the following augmented
matrix:1 −2 1 0

2 1 −3 5
4 −7 1 −2

. Which matrix can be the result?

a)

1 −2 1 0
0 1 −1 1
0 0 −2 −3



b)

1 −2 1 0
0 1 −1 1
0 0 −2 3



c)

1 −2 1 0
0 1 −1 1
0 0 −3 −2



d)

1 −2 1 0
0 1 −1 1
0 0 −3 2


2. Which matrix is not in reduced row echelon form?

a)

1 0 0 2
0 1 0 3
0 0 1 2



b)

1 2 0 0
0 0 1 0
0 0 0 1



c)

1 0 1 0
0 1 0 0
0 0 1 1



d)

1 0 0 0
0 1 2 0
0 0 0 1


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3. The inverse of

 3 −7 −2
−3 5 1

6 −4 0

 is

a)

4/3 2/3 1/2
2 1 1/2

−3 −5 −1



b)

2/3 1/2 4/3
1 1/2 2

−3 −5 −1



c)

2/3 4/3 1/2
1 2 1/2

−5 −3 −1



d)

2/3 4/3 1/2
1 2 1/2

−3 −5 −1


Solutions to the Practice quiz



Lecture 13 | Elementary matrices
View this lecture on YouTube

The row reduction algorithm of Gaussian elimination can be implemented by multiplying
elementary matrices. Here, we show how to construct these elementary matrices, which
differ from the identity matrix by a single elementary row operation. Consider the first
row reduction step for the following matrix A:

A =

−3 2 −1
6 −6 7
3 −4 4

→

−3 2 −1
0 −2 5
3 −4 4

 = M1A, where M1 =

1 0 0
2 1 0
0 0 1

 .

To construct the elementary matrix M1, the number two is placed in column-one, row-two.
This matrix multiplies the first row by two and adds the result to the second row.

The next step in row elimination is−3 2 −1
0 −2 5
3 −4 4

→

−3 2 −1
0 −2 5
0 −2 3

 = M2M1A, where M2 =

1 0 0
0 1 0
1 0 1

 .

Here, to construct M2 the number one is placed in column-one, row-three, and the matrix
multiplies the first row by one and adds the result to the third row.

The last step in row elimination is−3 2 −1
0 −2 5
0 −2 3

→

−3 2 −1
0 −2 5
0 0 −2

 = M3M2M1A, where M3 =

 1 0 0
0 1 0
0 −1 1

 .

Here, to construct M3 the number negative-one is placed in column-two, row-three, and
this matrix multiplies the second row by negative-one and adds the result to the third
row.

We have thus found that
M3M2M1A = U,

where U is an upper triangular matrix. This discussion will be continued in the next
lecture.
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Problems for Lecture 13

1. Construct the elementary matrix that multiplies the second row of a four-by-four matrix
by two and adds the result to the fourth row.

Solutions to the Problems



Lecture 14 | LU decomposition
View this lecture on YouTube

In the last lecture, we have found that row reduction of a matrix A can be written as

M3M2M1A = U,

where U is upper triangular. Upon inverting the elementary matrices, we have

A = M−1
1 M−1

2 M−1
3 U.

Now, the matrix M1 multiples the first row by two and adds it to the second row. To invert
this operation, we simply need to multiply the first row by negative-two and add it to the
second row, so that

M1 =

1 0 0
2 1 0
0 0 1

 , M−1
1 =

 1 0 0
−2 1 0

0 0 1

 .

Similarly,

M2 =

1 0 0
0 1 0
1 0 1

 , M−1
2 =

 1 0 0
0 1 0

−1 0 1

 ; M3 =

1 0 0
0 1 0
0 −1 1

 , M−1
3 =

1 0 0
0 1 0
0 1 1

 .

Therefore,
L = M−1

1 M−1
2 M−1

3

is given by

L =

 1 0 0
−2 1 0

0 0 1


 1 0 0

0 1 0
−1 0 1


1 0 0

0 1 0
0 1 1

 =

 1 0 0
−2 1 0
−1 1 1

 ,

which is lower triangular. Also, the non-diagonal elements of the elementary inverse
matrices are simply combined to form L. Our LU decomposition of A is therefore−3 2 −1

6 −6 7
3 −4 4

 =

 1 0 0
−2 1 0
−1 1 1


−3 2 −1

0 −2 5
0 0 −2

 .
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Problems for Lecture 14

1. Find the LU decomposition of  3 −7 −2
−3 5 1

6 −4 0

 .

Solutions to the Problems



Lecture 15 | Solving (LU)x = b
View this lecture on YouTube

The LU decomposition is useful when one needs to solve Ax = b for many right-hand
sides. With the LU decomposition in hand, one writes

(LU)x = L(Ux) = b,

and lets y = Ux. Then we solve Ly = b for y by forward substitution, starting from
the first equation and working forward to complete the solution, and Ux = y for x by
backward substitution. It is possible to show that for large matrices, solving (LU)x = b is
substantially faster than solving Ax = b directly.

We now illustrate the solution of LUx = b, with

L =

 1 0 0
−2 1 0
−1 1 1

 , U =

−3 2 −1
0 −2 5
0 0 −2

 , b =

−1
−7
−6

 .

With y = Ux, we first solve Ly = b, that is, 1 0 0
−2 1 0
−1 1 1


y1

y2

y3

 =

−1
−7
−6

 .

Using forward substitution,

y1 = −1,

y2 = −7 + 2y1 = −9,

y3 = −6 + y1 − y2 = 2.

We then solve Ux = y, that is,−3 2 −1
0 −2 5
0 0 −2


x1

x2

x3

 =

−1
−9

2

 .

Using back substitution,

x3 = −1,

x2 = −1
2
(−9 − 5x3) = 2,

x1 = −1
3
(−1 − 2x2 + x3) = 2,

and we have found
(

x1, x2, x3

)
=
(

2, 2, −1
)

.
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Problems for Lecture 15

1. Using

A =

 3 −7 −2
−3 5 1

6 −4 0

 =

 1 0 0
−1 1 0

2 −5 1


3 −7 −2

0 −2 −1
0 0 −1

 = LU,

compute the solution to Ax = b with

(a) b =

−3
3
2

, (b) b =

 1
−1

1

.

Solutions to the Problems



Practice Quiz | LU decomposition
1. Which of the following is the elementary matrix that multiplies the second row of a
four-by-four matrix by 2 and adds the result to the third row?

a)


1 0 0 0
2 1 0 0
0 0 1 0
0 0 0 1



b)


1 0 0 0
0 1 2 0
0 0 1 0
0 0 0 1



c)


1 0 0 0
0 1 0 0
0 2 1 0
0 0 0 1



d)


1 0 0 0
0 1 0 0
0 0 1 0
2 0 0 1


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2. Which of the following is the LU decomposition of

 3 −7 −2
−3 5 1

6 −4 0

?

a)

 1 0 0
−1 1 0

2 −5 1/2


3 −7 −2

0 −2 −1
0 0 −2



b)

 1 0 0
−1 1 0

2 −5 1


3 −7 −2

0 −2 −1
0 0 −1



c)

 1 0 0
−1 2 −1

2 −10 6


3 −7 −2

0 −1 −1
0 0 −1



d)

 1 0 0
−1 1 0

4 −5 1


 3 −7 −2

0 −2 −1
−6 14 3



3. Suppose L =

 1 0 0
−1 1 0

2 −5 1

, U =

3 −7 −2
0 −2 −1
0 0 −1

 and b =

 1
−1

1

. Solve LUx = b

by letting y = Ux. The solutions for y and x are

a) y =

−1
0
1

, x =

1/6
1/2
−1



b) y =

 1
0

−1

, x =

−1/6
−1/2

1



c) y =

 1
0

−1

, x =

 1/6
−1/2

1



d) y =

−1
0
1

, x =

−1/6
1/2

1


Solutions to the Practice quiz



Week III

Vector Spaces

In this week’s lectures, we learn about vector spaces. A vector space consists of a set of vectors and
a set of scalars that is closed under vector addition and scalar multiplication and that satisfies the
usual rules of arithmetic. We will learn some of the vocabulary and phrases of linear algebra, such
as linear independence, span, basis and dimension. We will learn about the four fundamental sub-
spaces of a matrix, the Gram-Schmidt process, orthogonal projection, and the matrix formulation
of the least-squares problem of drawing a straight line to fit noisy data.
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Lecture 16 | Vector spaces
View this lecture on YouTube

A vector space consists of a set of vectors and a set of scalars. Although vectors can be
quite general, for the purpose of this course we will only consider vectors that are real
column matrices, and scalars that are real numbers.

For the set of vectors and scalars to form a vector space, the set of vectors must be
closed under vector addition and scalar multiplication. That is, when you multiply any
two vectors in the set by real numbers and add them, the resulting vector must still be in
the set.

As an example, consider the set of vectors consisting of all three-by-one matrices, and
let u and v be two of these vectors. Let w = au + bv be the sum of these two vectors
multiplied by the real numbers a and b. If w is still a three-by-one matrix, then this set of
vectors is closed under scalar multiplication and vector addition, and is indeed a vector
space. The proof is rather simple. If we let

u =

u1

u2

u3

 , v =

v1

v2

v3

 ,

then

w = au + bv =

au1 + bv1

au2 + bv2

au3 + bv3


is evidently a three-by-one matrix. This vector space is called R3.

Our main interest in vector spaces is to determine the vector spaces associated with
matrices. There are four fundamental vector spaces of an m-by-n matrix A. They are
called the null space, the column space, the row space, and the left null space. We will meet
these vector spaces in later lectures.
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Problems for Lecture 16

1. Explain why, in a vector space with real numbers as the set of scalars, the zero vector
must be a member of every vector space.

2. Explain why the following sets of three-by-one matrices (with real number scalars) are
vector spaces:

(a) The set of three-by-one matrices with zero in the first row;

(b) The set of three-by-one matrices with first row equal to the second row;

(c) The set of three-by-one matrices with first row a constant multiple of the third row.

Solutions to the Problems



Lecture 17 | Linear independence
View this lecture on YouTube

The vectors {u1, u2, . . . , un} are linearly independent if for any scalars c1, c2, . . . , cn, the
equation

c1u1 + c2u2 + · · ·+ cnun = 0

has only the solution c1 = c2 = · · · = cn = 0. What this means is that one is unable to
write any of the vectors u1, u2, . . . , un as a linear combination of any of the other vectors.
For instance, if there was a solution to the above equation with c1 ̸= 0, then we could
solve that equation for u1 in terms of the other vectors with nonzero coefficients.

As an example consider whether the following three three-by-one column vectors are
linearly independent:

u =

1
0
0

 , v =

0
1
0

 , w =

2
3
0

 .

Indeed, they are not linearly independent, that is, they are linearly dependent, because w
can be written in terms of u and v. In fact, w = 2u + 3v.

Now consider the three three-by-one column vectors given by

u =

1
0
0

 , v =

0
1
0

 , w =

0
0
1

 .

These three vectors are linearly independent because you cannot write any one of these
vectors as a linear combination of the other two. If we go back to our definition of linear
independence, we can see that the equation

au + bv + cw =

a
b
c

 =

0
0
0


has as its only solution a = b = c = 0.

For simple examples, visual inspection can often decide if a set of vectors are linearly
independent. For a more algorithmic procedure, place the vectors as the rows of a matrix
and compute the reduced row echelon form. If the last row becomes all zeros, then the
vectors are linearly dependent, and if not all zeros, then they are linearly independent.
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Problems for Lecture 17

1. Which of the following sets of vectors are linearly independent?

(a)


1

1
0

 ,

1
0
1

 ,

0
1
1




(b)


−1

1
1

 ,

 1
−1

1

 ,

 1
1

−1




(c)


0

1
0

 ,

1
0
1

 ,

1
1
1




Solutions to the Problems



Lecture 18 | Span, basis and
dimension

View this lecture on YouTube

Given a set of vectors, one can generate a vector space by forming all linear combina-
tions of that set of vectors. The span of the set of vectors {v1, v2, . . . , vn} is the vector
space consisting of all linear combinations of v1, v2, . . . , vn. We say that a set of vectors
spans a vector space.

For example, the set of vectors given by
1

0
0

 ,

0
1
0

 ,

2
3
0




spans the vector space of all three-by-one matrices with zero in the third row. This vector
space is a vector subspace of all three-by-one matrices.

One doesn’t need all three of these vectors to span this vector subspace because any
one of these vectors is linearly dependent on the other two. The smallest set of vectors
needed to span a vector space forms a basis for that vector space. Here, given the set of
vectors above, we can construct a basis for the vector subspace of all three-by-one matrices
with zero in the third row by simply choosing two out of three vectors from the above
spanning set. Three possible basis vectors are given by

1
0
0

 ,

0
1
0


 ,


1

0
0

 ,

2
3
0


 ,


0

1
0

 ,

2
3
0


 .

Although all three combinations form a basis for the vector subspace, the first combination
is usually preferred because this is an orthonormal basis. The vectors in this basis are
mutually orthogonal and of unit norm.

The number of vectors in a basis gives the dimension of the vector space. Here, the
dimension of the vector space of all three-by-one matrices with zero in the third row is
two.
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Problems for Lecture 18

1. Find an orthonormal basis for the vector space of all three-by-one matrices with first
row equal to second row. What is the dimension of this vector space?

Solutions to the Problems



Practice Quiz | Vector space
definitions

1. Which set of three-by-one matrices (with real number scalars) is not a vector space?

a) The set of three-by-one matrices with zero in the second row.

b) The set of three-by-one matrices with the sum of all rows equal to one.

c) The set of three-by-one matrices with the first row equal to the third row.

d) The set of three-by-one matrices with the first row equal to the sum of the second
and third rows.

2. Which one of the following sets of vectors is linearly independent?

a)


1

0
0

 ,

0
1
0

 ,

 1
−1

0




b)


2

1
1

 ,

 1
−1

2

 ,

 4
6

−2




c)


 1

0
−1

 ,

 0
1

−1

 ,

 1
−1

0




d)


3

2
1

 ,

3
1
2

 ,

2
1
0



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3. Which one of the following is an orthonormal basis for the vector space of all three-by-
one matrices with the sum of all rows equal to zero?

a)

 1
√

2

 1
−1

0

 ,
1
√

2

−1
1
0




b)

 1
√

2

 1
−1

0

 ,
1
√

6

 1
1

−2




c)

 1
√

2

 1
−1

0

 ,
1
√

2

 1
0

−1

 ,
1
√

2

 0
1

−1




d)

 1
√

6

 2
−1
−1

 ,
1
√

6

−1
2

−1

 ,
1
√

6

−1
−1

2




Solutions to the Practice quiz



Lecture 19 | Gram-Schmidt
process

View this lecture on YouTube

Given any basis for a vector space, we can use an algorithm called the Gram-Schmidt
process to construct an orthonormal basis for that space. Let the vectors v1, v2, . . . , vn be
a basis for some n-dimensional vector space. We will assume here that these vectors are
column matrices, but this process also applies more generally.

We will construct an orthogonal basis u1, u2, . . . , un, and then normalize each vector
to obtain an orthonormal basis. First, define u1 = v1. To find the next orthogonal basis
vector, define

u2 = v2 −
(uT

1 v2)u1

uT
1 u1

.

Observe that u2 is equal to v2 minus the component of v2 that is parallel to u1. By
multiplying both sides of this equation with uT

1 , it is easy to see that uT
1 u2 = 0 so that

these two vectors are orthogonal.
The next orthogonal vector in the new basis can be found from

u3 = v3 −
(uT

1 v3)u1

uT
1 u1

−
(uT

2 v3)u2

uT
2 u2

.

Here, u3 is equal to v3 minus the components of v3 that are parallel to u1 and u2. We can
continue in this fashion to construct n orthogonal basis vectors. These vectors can then be
normalized via

û1 =
u1

(uT
1 u1)1/2

, etc.

Since uk is a linear combination of v1, v2, . . . , vk, the vector subspace spanned by the
first k basis vectors of the original vector space is the same as the subspace spanned by the
first k orthonormal vectors generated through the Gram-Schmidt process. We can write
this result as

span{u1, u2, . . . , uk} = span{v1, v2, . . . , vk}.

51

https://youtu.be/eib8uAlzegc


WEEK III. VECTOR SPACES 52

Problems for Lecture 19

1. Suppose the four basis vectors {v1, v2, v3, v4} are given, and one performs the Gram-
Schmidt process on these vectors in order. Write down the equation to find the fourth
orthogonal vector u4. Do not normalize.

Solutions to the Problems



Lecture 20 | Gram-Schmidt
process (example)

View this lecture on YouTube

As an example of the Gram-Schmidt process, consider a subspace of three-by-one col-
umn matrices with the basis

{v1, v2} =


1

1
1

 ,

0
1
1


 ,

and construct an orthonormal basis for this subspace. Let u1 = v1. Then u2 is found from

u2 = v2 −
(uT

1 v2)u1

uT
1 u1

=

0
1
1

− 2
3

1
1
1

 =
1
3

−2
1
1

 .

Normalizing the two vectors, we obtain the orthonormal basis

{û1, û2} =

 1√
3

1
1
1

 ,
1√
6

−2
1
1


 .

Notice that the initial two vectors v1 and v2 span the vector subspace of three-by-one
column matrices for which the second and third rows are equal. Clearly, the orthonormal
basis vectors constructed from the Gram-Schmidt process span the same subspace.
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Problems for Lecture 20

1. Consider the vector subspace of three-by-one column vectors with the third row equal
to the negative of the second row, and with the following given basis:

W =


 0

1
−1

 ,

 1
1

−1


 .

Use the Gram-Schmidt process to construct an orthonormal basis for this subspace.

2. Consider a subspace of all four-by-one column vectors with the following basis:

W =




1
1
1
1

 ,


0
1
1
1

 ,


0
0
1
1


 .

Use the Gram-Schmidt process to construct an orthonormal basis for this subspace.

Solutions to the Problems



Practice Quiz | Gram-Schmidt
process

1. In the fourth step of the Gram-Schmidt process, the vector

u4 = v4 −
(uT

1 v4)u1

uT
1 u1

−
(uT

2 v4)u2

uT
2 u2

−
(uT

3 v4)u3

uT
3 u3

is always perpendicular to

a) v1

b) v2

c) v3

d) v4

2. The Gram-Schmidt process applied to {v1, v2} =

{(
1
1

)
,

(
1

−1

)}
results in

a) {û1, û2} =

{
1
√

2

(
1
1

)
,

1
√

2

(
1

−1

)}

b) {û1, û2} =

{
1
√

2

(
1
1

)
,

(
0
0

)}

c) {û1, û2} =

{(
1
0

)
,

(
0
1

)}

d) {û1, û2} =

{
1
√

3

(
1
2

)
,

1
√

3

(
2

−1

)}
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3. The Gram-Schmidt process applied to {v1, v2} =


 1

1
−1

 ,

 0
1

−1


 results in

a) {û1, û2} =

 1
√

3

 1
1

−1

 ,
1
√

2

0
1
1




b) {û1, û2} =

 1
√

3

 1
1

−1

 ,
1
√

6

−2
1

−1




c) {û1, û2} =

 1
√

3

 1
1

−1

 ,
1
√

2

 1
−1

0




d) {û1, û2} =

 1
√

3

 1
1

−1

 ,
1
√

2

1
0
1




Solutions to the Practice quiz



Lecture 21 | Null space

View this lecture on YouTube

The null space of a matrix A, which we denote as Null(A), is the vector space spanned by
all column vectors x that satisfy the matrix equation

Ax = 0.

Clearly, if x and y are in the null space of A, then so is ax + by so that the null space is
closed under vector addition and scalar multiplication. If the matrix A is m-by-n, then
Null(A) is a vector subspace of all n-by-one column matrices. If A is a square invertible
matrix, then Null(A) consists of just the zero vector.

To find a basis for the null space of a noninvertible matrix, we bring A to reduced row
echelon form. We demonstrate by example. Consider the three-by-five matrix given by

A =

−3 6 −1 1 −7
1 −2 2 3 −1
2 −4 5 8 −4

 .

By judiciously permuting rows to simplify the arithmetic, one pathway to construct rref(A)
is −3 6 −1 1 −7

1 −2 2 3 −1
2 −4 5 8 −4

→

 1 −2 2 3 −1
−3 6 −1 1 −7

2 −4 5 8 −4



→

1 −2 2 3 −1
0 0 5 10 −10
0 0 1 2 −2

→

1 −2 2 3 −1
0 0 1 2 −2
0 0 5 10 −10



→

1 −2 0 −1 3
0 0 1 2 −2
0 0 0 0 0

 .

We call the variables associated with the pivot columns, x1 and x3, basic variables, and the
variables associated with the non-pivot columns, x2, x4 and x5, free variables. Writing the
basic variables on the left-hand side of the Ax = 0 equations, we have from the first and
second rows

x1 = 2x2 + x4 − 3x5,

x3 = −2x4 + 2x5.
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Eliminating x1 and x3, we can write the general solution for vectors in Null(A) as
2x2 + x4 − 3x5

x2

−2x4 + 2x5

x4

x5

 = x2


2
1
0
0
0

+ x4


1
0

−2
1
0

+ x5


−3

0
2
0
1

 ,

where the free variables x2, x4, and x5 can take any values. By writing the null space in
this form, a basis for Null(A) is made evident, and is given by


2
1
0
0
0

 ,


1
0

−2
1
0

 ,


−3

0
2
0
1




.

The null space of A is seen to be a three-dimensional subspace of all five-by-one col-
umn matrices. In general, the dimension of Null(A) is equal to the number of non-pivot
columns of rref(A).
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Problems for Lecture 21

1. Determine a basis for the null space of

A =

1 1 1 0
1 1 0 1
1 0 1 1

 .

Solutions to the Problems



Lecture 22 | Application of the
null space

View this lecture on YouTube

An under-determined system of linear equations Ax = b with more unknowns than
equations may not have a unique solution. If u is the general form of a vector in the
null space of A, and v is any vector that satisfies Av = b, then x = u + v satisfies
Ax = A(u + v) = Au + Av = 0 + b = b. The general solution of Ax = b can there-
fore be written as the sum of a general vector in Null(A) and a particular vector that
satisfies the under-determined system.

As an example, suppose we want to find the general solution to the linear system of
two equations and three unknowns given by

2x1 + 2x2 + x3 = 0,

2x1 − 2x2 − x3 = 1,

which in matrix form is given by

(
2 2 1
2 −2 −1

)x1

x2

x3

 =

(
0
1

)
.

We first bring the augmented matrix to reduced row echelon form:(
2 2 1 0
2 −2 −1 1

)
→
(

1 0 0 1/4
0 1 1/2 −1/4

)
.

The null space satisfying Au = 0 is determined from u1 = 0 and u2 = −u3/2, and we can
write

Null(A) = span


 0
−1

2


 .

A particular solution for the inhomogeneous system satisfying Av = b is found by solving
v1 = 1/4 and v2 + v3/2 = −1/4. Here, we simply take the free variable v3 to be zero, and
we find v1 = 1/4 and v2 = −1/4. The general solution to the original underdetermined
linear system is the sum of the null space and the particular solution and is given byx1

x2

x3

 = a

 0
−1

2

+
1
4

 1
−1

0

 .
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Problems for Lecture 22

1. Find the general solution to the system of equations given by

−3x1 + 6x2 − x3 + x4 = −7,

x1 − 2x2 + 2x3 + 3x4 = −1,

2x1 − 4x2 + 5x3 + 8x4 = −4.

Solutions to the Problems



Lecture 23 | Column space
View this lecture on YouTube

The column space of a matrix is the vector space spanned by the columns of the ma-
trix. When a matrix is multiplied by a column vector, the resulting vector is in the column
space of the matrix, as can be seen from(

a b
c d

)(
x
y

)
=

(
ax + by
cx + dy

)
= x

(
a
c

)
+ y

(
b
d

)
.

In general, Ax is a linear combination of the columns of A. Given an m-by-n matrix A,
what is the dimension of the column space of A, and how do we find a basis? Note that
since A has m rows, the column space of A is a subspace of all m-by-one column matrices.

Fortunately, a basis for the column space of A can be found from rref(A). Consider the
example

A =

−3 6 −1 1 −7
1 −2 2 3 −1
2 −4 5 8 −4

 , rref(A) =

1 −2 0 −1 3
0 0 1 2 −2
0 0 0 0 0

 .

The matrix equation Ax = 0 expresses the linear dependence of the columns of A, and
row operations on A do not change the dependence relations. For example, the second
column of A above is −2 times the first column, and after several row operations, the
second column of rref(A) is still −2 times the first column.

It should be self-evident that only the pivot columns of rref(A) are linearly indepen-
dent, and the dimension of the column space of A is therefore equal to its number of
pivot columns; here it is two. A basis for the column space is given by the first and third
columns of A, (not rref(A)), and is

−3
1
2

 ,

−1
2
5


 .

Recall that the dimension of the null space is the number of non-pivot columns—equal
to the number of free variables—so that the sum of the dimensions of the null space and
the column space is equal to the total number of columns. A statement of this theorem is
as follows. Let A be an m-by-n matrix. Then

dim(Col(A)) + dim(Null(A)) = n.
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Problems for Lecture 23

1. Determine the dimension and find a basis for the column space of

A =

1 1 1 0
1 1 0 1
1 0 1 1

 .

Solutions to the Problems



Lecture 24 | Row space, left null
space and rank

View this lecture on YouTube

In addition to the column space and the null space, a matrix A has two more vector
spaces associated with it, namely the column space and null space of AT, which are called
the row space and the left null space.

If A is an m-by-n matrix, then the row space and the null space are subspaces of all
n-by-one column matrices, and the column space and the left null space are subspaces of
all m-by-one column matrices.

The null space consists of all vectors x such that Ax = 0, that is, the null space is the
set of all vectors that are orthogonal to the row space of A. We say that these two vector
spaces are orthogonal.

A basis for the row space of a matrix can be found from computing rref(A), and
is found to be rows of rref(A) (written as column vectors) with pivot columns. The
dimension of the row space of A is therefore equal to the number of pivot columns, while
the dimension of the null space of A is equal to the number of nonpivot columns. The
union of these two subspaces make up the vector space of all n-by-one matrices and we
say that these subspaces are orthogonal complements of each other.

Furthermore, the dimension of the column space of A is also equal to the number of
pivot columns, so that the dimensions of the column space and the row space of a matrix
are equal. We have

dim(Col(A)) = dim(Row(A)).

We call this dimension the rank of the matrix A. This is an amazing result since the
column space and row space are subspaces of two different vector spaces. In general, we
must have rank(A) ≤ min(m, n). When the equality holds, we say that the matrix is of
full rank. And when A is a square matrix and of full rank, then the dimension of the null
space is zero and A is invertible.
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Problems for Lecture 24

1. Find a basis for the column space, row space, null space and left null space of the
four-by-five matrix A, where

A =


2 3 −1 1 2

−1 −1 0 −1 1
1 2 −1 1 1
1 −2 3 −1 −3


Check to see that null space is the orthogonal complement of the row space, and the
left null space is the orthogonal complement of the column space. Find rank(A). Is this
matrix of full rank?

Solutions to the Problems



Practice Quiz | Fundamental
subspaces

1. Which of the following sets of vectors form a basis for the null space of

1 2 0 1
2 4 1 1
3 6 1 1

?

a)




−2

1
0
0

 ,


4

−2
0
0




b)




0
0
0
0




c)




0
0

−3
2




d)




−2

1
0
0



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2. The general solution to the system of equations given by

x1 + 2x2 + x4 = 1,

2x1 + 4x2 + x3 + x4 = 1,

3x1 + 6x2 + x3 + x4 = 1,

is

a) a


0
0
0
1

+


−2

1
0
0



b) a


−2

1
0
0

+


0
0
0
1



c) a


0
0
0
1

+


0
0

−3
2



d) a


0
0

−3
2

+


0
0
0
1



3. What is the rank of the matrix

1 2 0 1
2 4 1 1
3 6 1 1

?

a) 1

b) 2

c) 3

d) 4

Solutions to the Practice quiz



Lecture 25 | Orthogonal
projections

View this lecture on YouTube

Suppose that V is the n-dimensional vector space of all n-by-one matrices and W is a
p-dimensional subspace of V. Let {s1, s2, . . . , sp} be an orthonormal basis for W. Extend-
ing the basis for W, let {s1, s2, . . . , sp, t1, t2, . . . , tn−p} be an orthonormal basis for V.

Any vector v in V can be expanded using the basis for V as

v = a1s1 + a2s2 + · · ·+ apsp + b1t1 + b2t2 + bn−ptn−p,

where the a’s and b’s are scalar coefficients. The orthogonal projection of v onto W is then
defined as

vprojW = a1s1 + a2s2 + · · ·+ apsp,

that is, the part of v that lies in W.
If you only know the vector v and the orthonormal basis for W, then the orthogonal

projection of v onto W can be computed from

vprojW = (vTs1)s1 + (vTs2)s2 + · · ·+ (vTsp)sp,

that is, a1 = vTs1, a2 = vTs2, etc.
We can prove that the vector vprojW is the vector in W that is closest to v. Let w be any

vector in W different than vprojW , and expand w in terms of the basis vectors for W:

w = c1s1 + c2s2 + · · ·+ cpsp.

The distance between v and w is given by the norm ||v − w||, and we have

||v − w||2 = (a1 − c1)
2 + (a2 − c2)

2 + · · ·+ (ap − cp)
2 + b2

1 + b2
2 + · · ·+ b2

n−p

≥ b2
1 + b2

2 + · · ·+ b2
n−p = ||v − vprojW ||2,

or ||v− vprojW || ≤ ||v−w||, a result that will be used later in the problem of least squares.
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Problems for Lecture 25

1. Find the general orthogonal projection of v onto W, where v =

a
b
c

 and W =

span


1

1
1

 ,

0
1
1


. What are the projections when v =

1
0
0

 and when v =

0
1
0

?

Solutions to the Problems



Lecture 26 | The least-squares
problem

View this lecture on YouTube

Suppose there is some experimental data that you want to fit by a straight line. This
is called a linear regression problem and an illustrative example is shown below.

In general, let the data consist of a set of n points given by (x1, y1), (x2, y2), . . . , (xn, yn).
Here, we assume that the x values are exact, and the y values are noisy. We further assume
that the best fit line to the data takes the form y = β0 + β1x. Although we know that the
line will not go through all of the data points, we can still write down the equations as if
it does. We have

y1 = β0 + β1x1, y2 = β0 + β1x2, . . . , yn = β0 + β1xn.

These equations constitute a system of n equations in the two unknowns β0 and β1. The
corresponding matrix equation is given by


1 x1

1 x2
...

...
1 xn


(

β0

β1

)
=


y1

y2
...

yn

 .

This is an overdetermined system of equations with no solution. The problem of least
squares is to find the best solution.

We can generalize this problem as follows. Suppose we are given a matrix equation,
Ax = b, that has no solution because b is not in the column space of A. So instead we
solve Ax = bprojCol(A)

, where bprojCol(A)
is the projection of b onto the column space of A.

The solution is then called the least-squares solution for x.
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Problems for Lecture 26

1. Suppose we have data points given by (xi, yi) = (0, 1), (1, 3), (2, 3), and (3, 4). If the
data is to be fit by the line y = β0 + β1x, write down the overdetermined matrix expression
for the set of equations yi = β0 + β1xi.

Solutions to the Problems



Lecture 27 | Solution of the least-
squares problem

View this lecture on YouTube

We want to find the least-squares solution to an overdetermined matrix equation Ax = b.
We write b = bprojCol(A)

+ (b − bprojCol(A)
), where bprojCol(A)

is the projection of b onto the
column space of A. Since (b − bprojCol(A)

) is orthogonal to the column space of A, it is in
the nullspace of AT. Multiplication of the overdetermined matrix equation by AT then
results in a solvable set of equations, called the normal equations for Ax = b, given by

ATAx = ATb.

A unique solution to this matrix equation exists when the columns of A are linearly
independent.

An interesting formula exists for the matrix which projects b onto the column space of
A. Multiplying the normal equations on the left by A(ATA)−1, we obtain

Ax = A(ATA)−1ATb = bprojCol(A)
.

Notice that the projection matrix P = A(ATA)−1AT satisfies P2 = P, that is, two projec-
tions is the same as one. If A itself is a square invertible matrix, then P = I and b is
already in the column space of A.

As an example of the application of the normal equations, consider the toy least-
squares problem of fitting a line through the three data points (1, 1), (2, 3) and (3, 2).
With the line given by y = β0 + β1x, the overdetermined system of equations is given by1 1

1 2
1 3

(β0

β1

)
=

1
3
2

 .

The least-squares solution is determined by solving

(
1 1 1
1 2 3

)1 1
1 2
1 3

(β0

β1

)
=

(
1 1 1
1 2 3

)1
3
2

 ,

or (
3 6
6 14

)(
β0

β1

)
=

(
6

13

)
.

We can use Gaussian elimination to determine β0 = 1 and β1 = 1/2, and the least-squares
line is given by y = 1+ x/2. The graph of the data and the line is shown on the next page.
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1 2 3

1

2

3

Solution of a toy least-squares problem.
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Problems for Lecture 27

1. Suppose we have data points given by (xn, yn) = (0, 1), (1, 3), (2, 3), and (3, 4). By
solving the normal equations, fit the data by the line y = β0 + β1x.

Solutions to the Problems



Practice Quiz | Orthogonal
projections

1. Which vector is the orthogonal projection of v =

0
0
1

 onto W = span


 0

1
−1

 ,

−2
1
1


?

a)
1
3

 1
1

−2



b)
1
3

−1
−1

2



c)
1
3

 2
−1
−1



d)
1
3

−2
1
1


2. Suppose we have data points given by (xn, yn) = (1, 1), (2, 1) and (3, 3). If the data is
to be fit by the line y = β0 + β1x, which is the overdetermined equation for β0 and β1?

a)

1 1
1 1
3 1

(β0

β1

)
=

1
2
3



b)

1 1
2 1
3 1

(β0

β1

)
=

1
1
3



c)

1 1
1 1
1 3

(β0

β1

)
=

1
2
3



d)

1 1
1 2
1 3

(β0

β1

)
=

1
1
3


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3. Suppose we have data points given by (xn, yn) = (1, 1), (2, 1) and (3, 3). Which is the
best fit line to the data?

a) y =
1
3
+ x

b) y = −1
3
+ x

c) y = 1 +
1
3

x

d) y = 1 − 1
3

x

Solutions to the Practice quiz



Week IV

Eigenvalues and Eigenvectors

In this week’s lectures, we will learn about determinants and the eigenvalue problem. We will learn
how to compute determinants using a Laplace expansion, the Leibniz formula, or by row or column
elimination. We will formulate the eigenvalue problem and learn how to find the eigenvalues and
eigenvectors of a matrix. We will learn how to diagonalize a matrix using its eigenvalues and
eigenvectors, and how this leads to an easy calculation of a matrix raised to a power.
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Lecture 28 | Two-by-two and three-
by-three determinants

View this lecture on YouTube

We already showed that a two-by-two matrix A is invertible when its determinant is
nonzero, where

det A =

∣∣∣∣∣a b
c d

∣∣∣∣∣ = ad − bc.

If A is invertible, then the equation Ax = b has the unique solution x = A−1b. But if A
is not invertible, then Ax = b may have no solution or an infinite number of solutions.
When det A = 0, we say that the matrix A is singular.

It is also straightforward to define the determinant for a three-by-three matrix. We
consider the system of equations Ax = 0 and determine the condition for which x = 0 is
the only solution. With a b c

d e f
g h i


x1

x2

x3

 = 0,

one can do the messy algebra of elimination to solve for x1, x2, and x3. One finds that
x1 = x2 = x3 = 0 is the only solution when det A ̸= 0, where the definition, apart from a
constant, is given by

det A = aei + b f g + cdh − ceg − bdi − a f h.

An easy way to remember this result is to mentally draw the following picture:

a b c a b

d e f d e

g h i g h



 —

a b c a b

d e f d e

g h i g h




.

The matrix A is periodically extended two columns to the right, drawn explicitly here but
usually only imagined. Then the six terms comprising the determinant are made evident,
with the lines slanting down towards the right getting the plus signs and the lines slanting
down towards the left getting the minus signs. Unfortunately, this mnemonic only works
for three-by-three matrices.
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Problems for Lecture 28

1. Find the determinant of the three-by-three identity matrix.

2. Show that the three-by-three determinant changes sign when the first two rows are
interchanged.

3. Let A and B be two-by-two matrices. Prove by direct computation that det AB =

det A det B.

Solutions to the Problems



Lecture 29 | Laplace expansion
View this lecture on YouTube

There is a way to write the three-by-three determinant that generalizes. It is called a
Laplace expansion (also called a cofactor expansion or expansion by minors). For the
three-by-three determinant, we have∣∣∣∣∣∣∣

a b c
d e f
g h i

∣∣∣∣∣∣∣ = aei + b f g + cdh − ceg − bdi − a f h

= a(ei − f h)− b(di − f g) + c(dh − eg),

which can be written suggestively as∣∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣∣ = a

∣∣∣∣∣e f
h i

∣∣∣∣∣− b

∣∣∣∣∣d f
g i

∣∣∣∣∣+ c

∣∣∣∣∣d e
g h

∣∣∣∣∣ .

Evidently, the three-by-three determinant can be computed from lower-order two-by-two
determinants, called minors. The rule here for a general n-by-n matrix is that one goes
across the first row of the matrix, multiplying each element in the row by the determinant
of the matrix obtained by crossing out that element’s row and column, and adding the
results with alternating signs.

In fact, this expansion in minors can be done across any row or down any column.
When the minor is obtained by deleting the ith-row and j-th column, then the sign of the
term is given by (−1)i+j. An easy way to remember the signs is to form a checkerboard
pattern, exhibited here for the three-by-three and four-by-four matrices:

+ − +

− + −
+ − +

 ,


+ − + −
− + − +

+ − + −
− + − +

 .

Example: Compute the determinant of

A =


1 0 0 −1
3 0 0 5
2 2 4 −3
1 0 5 0

 .

We first expand in minors down the second column. The only nonzero contribution comes
from the two in the third row, and we cross out the second column and third row (and
multiply by a minus sign) to obtain a three-by-three determinant:
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∣∣∣∣∣∣∣∣∣∣
1 0 0 −1
3 0 0 5
2 2 4 −3
1 0 5 0

∣∣∣∣∣∣∣∣∣∣
= −2

∣∣∣∣∣∣∣
1 0 −1
3 0 5
1 5 0

∣∣∣∣∣∣∣ .

We then again expand in minors down the second column. The only nonzero contribution
comes from the five in the third row, and we cross out the second column and third
row (and mutiply by a minus sign) to obtain a two-by-two determinant, which we then
compute:

−2

∣∣∣∣∣∣∣
1 0 −1
3 0 5
1 5 0

∣∣∣∣∣∣∣ = 10

∣∣∣∣∣1 −1
3 5

∣∣∣∣∣ = 80.

The trick here is to expand by minors across the row or column containing the most zeros.
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Problems for Lecture 29

1. Compute the determinant of

A =


6 3 2 4 0
9 0 4 1 0
8 −5 6 7 −2

−2 0 0 0 0
4 0 3 2 0

 .

Solutions to the Problems



Lecture 30 | Leibniz formula
View this lecture on YouTube

Another way to generalize the three-by-three determinant is called the Leibniz formula,
or more descriptively, the big formula. The three-by-three determinant can be written as∣∣∣∣∣∣∣

a b c
d e f
g h i

∣∣∣∣∣∣∣ = aei − a f h + b f g − bdi + cdh − ceg,

where each term in the formula contains a single element from each row and from each
column. For example, to obtain the third term b f g, b comes from the first row and second
column, f comes from the second row and third column, and g comes from the third row
and first column. As we can choose one of three elements from the first row, then one of
two elements from the second row, and only one element from the third row, there are
3! = 6 terms in the formula, and the general n-by-n matrix without any zero entries will
have n! terms.

The sign of each term depends on whether the choice of columns as we go down the
rows is an even or odd permutation of the columns ordered as {1, 2, 3, . . . , n}. An even
permutation is when columns are interchanged an even number of times, and an odd
permutation is when they are interchanged an odd number of times. Even permutations
get a plus sign and odd permutations get a minus sign.

For the determinant of the three-by-three matrix, the plus terms aei, b f g, and cdh
correspond to the column orderings {1, 2, 3}, {2, 3, 1} and {3, 1, 2}, which are even per-
mutations of {1, 2, 3}, and the minus terms a f h, bdi, and ceg correspond to the column
orderings {1, 3, 2}, {2, 1, 3} and {3, 2, 1}, which are odd permutations.
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Problems for Lecture 30

1. Using the Leibniz formula, compute the determinant of the following four-by-four
matrix:

A =


a b c d
e f 0 0
0 g h 0
0 0 i j

 .

Solutions to the Problems



Lecture 31 | Properties of a
determinant

View this lecture on YouTube

The determinant is a function that maps a square matrix to a scalar. It is uniquely defined
by the following three properties:

Property 1: The determinant of the identity matrix is one;

Property 2: The determinant changes sign under row interchange;

Property 3: The determinant is a linear function of the first row, holding all other rows
fixed.

Using two-by-two matrices, the first two properties are illustrated by∣∣∣∣∣1 0
0 1

∣∣∣∣∣ = 1 and

∣∣∣∣∣a b
c d

∣∣∣∣∣ = −
∣∣∣∣∣c d
a b

∣∣∣∣∣ ;

and the third property is illustrated by∣∣∣∣∣ka kb
c d

∣∣∣∣∣ = k

∣∣∣∣∣a b
c d

∣∣∣∣∣ and

∣∣∣∣∣a + a′ b + b′

c d

∣∣∣∣∣ =
∣∣∣∣∣a b
c d

∣∣∣∣∣+
∣∣∣∣∣a′ b′

c d

∣∣∣∣∣ .

Both the Laplace expansion and Leibniz formula for the determinant can be proved from

these three properties. Other useful properties of the determinant can also be proved:

∙ The determinant is a linear function of any row, holding all other rows fixed;

∙ If a matrix has two equal rows, then the determinant is zero;

∙ If we add k times row-i to row-j, the determinant doesn’t change;

∙ The determinant of a matrix with a row of zeros is zero;

∙ A matrix with a zero determinant is not invertible;

∙ The determinant of a diagonal matrix is the product of the diagonal elements;

∙ The determinant of an upper or lower triangular matrix is the product of the diago-
nal elements;

∙ The determinant of the product of two matrices is equal to the product of the deter-
minants;

∙ The determinant of the inverse matrix is equal to the reciprical of the determinant;

∙ The determinant of the transpose of a matrix is equal to the determinant of the
matrix.
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Notably, these properties imply that Gaussian elimination, done on rows or columns
or both, can be used to simplify the computation of a determinant. Row interchanges
and multiplication of a row by a constant change the determinant and must be treated
correctly.
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Problems for Lecture 31

1. Using the defining properties of a determinant, prove that if a matrix has two equal
rows, then the determinant is zero.

2. Using the defining properties of a determinant, prove that the determinant is a linear
function of any row, holding all other rows fixed.

3. Using the results of the above problems, prove that if we add k times row-i to row-j,
the determinant doesn’t change.

4. Use Gaussian elimination to find the determinant of the following matrix:

A =

2 0 −1
3 1 1
0 −1 1

 .

Solutions to the Problems



Practice Quiz | Determinants

1. The determinant of


−3 0 −2 0 0

2 −2 −2 0 0
0 0 −2 0 0
3 0 −3 2 −3

−3 3 3 0 −2

 is equal to

a) 48

b) 42

c) −42

d) −48

2. The determinant of


a e 0 0
b f g 0
c 0 h i
d 0 0 j

 is equal to

a) a f hj + behj − cegj − degi

b) a f hj − behj + cegj − degi

c) agij − beij + ce f j − de f h

d) agij + beij − ce f j − de f h

3. Assume A and B are invertible n-by-n matrices. Which of the following identities is
false?

a) det A−1 = 1/ det A

b) det AT = det A

c) det (A + B) = det A + det B

d) det (AB) = det A det B

Solutions to the Practice quiz
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Lecture 32 | The eigenvalue
problem

View this lecture on YouTube

Let A be a square matrix, x a column vector, and λ a scalar. The eigenvalue problem
for A solves

Ax = λx

for eigenvalues λi with corresponding eigenvectors xi. Making use of the identity matrix
I, the eigenvalue problem can be rewritten as the homogeneous equation

(A − λI)x = 0,

where the matrix (A − λI) is just the matrix A with λ subtracted from its diagonal. For
there to be nonzero eigenvectors, the matrix (A − λI) must be singular, that is,

det (A − λI) = 0.

This equation is called the characteristic equation of the matrix A. From the Leibniz formula,
the characteristic equation of an n-by-n matrix is an n-th order polynomial equation in λ.
For each found λi, a corresponding eigenvector xi can be determined directly by solving
(A − λiI)x = 0 for x.

For illustration, we compute the eigenvalues of a general two-by-two matrix. We have

0 = det (A − λI) =

∣∣∣∣∣ a − λ b
c d − λ

∣∣∣∣∣ = (a − λ)(d − λ)− bc = λ2 − (a + d)λ + (ad − bc);

and this characteristic equation can be rewritten as

λ2 − Tr A λ + det A = 0,

where Tr A is the trace, or sum of the diagonal elements, of the matrix A.
Since the characteristic equation of a two-by-two matrix is a quadratic equation, it can

have either (i) two distinct real roots; (ii) two distinct complex conjugate roots; or (iii) one
degenerate real root. More generally, eigenvalues can be real or complex, and an n-by-n
matrix may have less than n distinct eigenvalues.
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Problems for Lecture 32

1. Using the formula for a three-by-three determinant, determine the characteristic equa-
tion for a general three-by-three matrix A. This equation should be written as a cubic
equation in λ.

Solutions to the Problems



Lecture 33 | Finding eigenvalues
and eigenvectors
(Part A)

View this lecture on YouTube

We compute here the two real eigenvalues and eigenvectors of a two-by-two matrix.

Example: Find the eigenvalues and eigenvectors of A =

(
0 1
1 0

)
.

The characteristic equation of A is given by

λ2 − 1 = 0,

with solutions λ1 = 1 and λ2 = −1. The first eigenvector is found by solving (A−λ1I)x =

0, or (
−1 1

1 −1

)(
x1

x2

)
= 0.

The equation from the second row is just a constant multiple of the equation from the first
row and this will always be the case for two-by-two matrices. From the first row, say, we
find x2 = x1. The second eigenvector is found by solving (A − λ2I)x = 0, or(

1 1
1 1

)(
x1

x2

)
= 0,

so that x2 = −x1. The eigenvalues and eigenvectors are therefore given by

λ1 = 1, x1 =

(
1
1

)
; λ2 = −1, x2 =

(
1

−1

)
.

The eigenvectors can be multiplied by an arbitrary nonzero constant. Notice that λ1 +

λ2 = Tr A and that λ1λ2 = det A, and analogous relations are true for any n-by-n matrix.
In particular, comparing the sum over all the eigenvalues and the matrix trace provides a
simple algebra check.
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Problems for Lecture 33

1. Find the eigenvalues and eigenvectors of

(
2 7
7 2

)
.

2. Find the eigenvalues and eigenvectors of

2 1 0
1 2 1
0 1 2

 .

Solutions to the Problems



Lecture 34 | Finding eigenvalues
and eigenvectors
(Part B)

View this lecture on YouTube

We compute some more eigenvalues and eigenvectors.

Example: Find the eigenvalues and eigenvectors of B =

(
0 1
0 0

)
.

The characteristic equation of B is given by

λ2 = 0,

so that there is a degenerate eigenvalue of zero. The eigenvector associated with the zero
eigenvalue is found from Bx = 0 and has zero second component. This matrix therefore
has only one eigenvalue and eigenvector, given by

λ = 0, x =

(
1
0

)
.

Example: Find the eigenvalues of C =

(
0 −1
1 0

)
.

The characteristic equation of C is given by

λ2 + 1 = 0,

which has the imaginary solutions λ = ±i. Matrices with complex eigenvalues play an
important role in the theory of linear differential equations.
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Problems for Lecture 34

1. Find the eigenvalues of

(
1 1

−1 1

)
.

Solutions to the Problems



Practice Quiz | The eigenvalue
problem

1. Which of the following are the eigenvalues of

(
1 −1

−1 2

)
?

a)
3
2
±

√
3

2

b)
3
2
±

√
5

2

c)
1
2
±

√
3

2

d)
1
2
±

√
5

2

2. Which of the following are the eigenvalues of

(
3 −1
1 3

)
?

a) 1 ± 3i

b) 1 ±
√

3

c) 3
√

3 ± 1

d) 3 ± i
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3. Which of the following is an eigenvector of

2 1 0
1 2 1
0 1 2

?

a)

1
0
1



b)

 1√
2

1



c)

0
1
0



d)


√

2
1√
2


Solutions to the Practice quiz



Lecture 35 | Matrix
diagonalization

View this lecture on YouTube

For concreteness, consider a two-by-two matrix A with eigenvalues and eigenvectors given
by

λ1, x1 =

(
x11

x21

)
; λ2, x2 =

(
x12

x22

)
.

And consider the matrix product and factorization given by

A

(
x11 x12

x21 x22

)
=

(
λ1x11 λ2x12

λ1x21 λ2x22

)
=

(
x11 x12

x21 x22

)(
λ1 0
0 λ2

)
.

Generalizing, we define S to be the matrix whose columns are the eigenvectors of A, and
Λ to be the diagonal matrix with eigenvalues down the diagonal. Then for any n-by-n
matrix with n linearly independent eigenvectors, we have

AS = SΛ,

where S is an invertible matrix. Multiplying both sides on the right or the left by S−1, we
derive the relations

A = SΛS−1 and Λ = S−1AS.

To remember the order of the S and S−1 matrices in these formulas, just remember that A
should be multiplied on the right by the eigenvectors placed in the columns of S.
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Problems for Lecture 35

1. Prove that two eigenvectors corresponding to distinct eigenvalues are linearly indepen-
dent.

2. Prove that if the columns of an n-by-n matrix are linearly independent, then the matrix
is invertible. (An n-by-n matrix whose columns are eigenvectors corresponding to distinct
eigenvalues is therefore invertible.)

Solutions to the Problems



Lecture 36 | Matrix diagonalization
(example)

View this lecture on YouTube

Example: Diagonalize the matrix A =

(
a b
b a

)
.

The eigenvalues of A are determined from

det(A − λI) =

∣∣∣∣∣a − λ b
b a − λ

∣∣∣∣∣ = (a − λ)2 − b2 = 0.

Solving for λ, the two eigenvalues are given by λ1 = a + b and λ2 = a − b. The corre-
sponding eigenvector for λ1 is found from (A − λ1I)x1 = 0, or(

−b b
b −b

)(
x11

x21

)
=

(
0
0

)
;

and the corresponding eigenvector for λ2 is found from (A − λ2I)x2 = 0, or(
b b
b b

)(
x12

x22

)
=

(
0
0

)
.

Solving for the eigenvectors and normalizing them, the eigenvalues and eigenvectors are
given by

λ1 = a + b, x1 =
1√
2

(
1
1

)
; λ2 = a − b, x2 =

1√
2

(
1

−1

)
.

The matrix S of eigenvectors can be seen to be orthogonal so that S−1 = ST. We then have

S =
1√
2

(
1 1
1 −1

)
and S−1 = ST = S;

and the diagonalization result is given by(
a + b 0

0 a − b

)
=

1
2

(
1 1
1 −1

)(
a b
b a

)(
1 1
1 −1

)
.
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Problems for Lecture 36

1. Diagonalize the matrix A =

2 1 0
1 2 1
0 1 2

.

Solutions to the Problems



Lecture 37 | Powers of a matrix
View this lecture on YouTube

Diagonalizing a matrix facilitates finding powers of that matrix. Suppose that A is di-
agonalizable, and consider

A2 = (SΛS−1)(SΛS−1) = SΛ2S−1,

where in the two-by-two example, Λ2 is simply(
λ1 0
0 λ2

)(
λ1 0
0 λ2

)
=

(
λ2

1 0
0 λ2

2

)
.

In general, Λp has the eigenvalues raised to the power of p down the diagonal, and

Ap = SΛpS−1.
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Problems for Lecture 37

1. From calculus, the exponential function is sometimes defined from the power series

ex = 1 + x +
1
2!

x2 +
1
3!

x3 + . . . .

In analogy, the matrix exponential of an n-by-n matrix A can be defined by

eA = I + A +
1
2!

A2 +
1
3!

A3 + . . . .

If A is diagonalizable, show that
eA = SeΛS−1,

where

eΛ =


eλ1 0 . . . 0
0 eλ2 . . . 0
...

...
. . .

...
0 0 . . . eλn

 .

Solutions to the Problems



Lecture 38 | Powers of a matrix
(example)

View this lecture on YouTube

Example: Determine a general formula for

(
a b
b a

)n

, where n is a positive integer.

We have previously determined that the matrix can be written as(
a b
b a

)
=

1
2

(
1 1
1 −1

)(
a + b 0

0 a − b

)(
1 1
1 −1

)
.

Raising the matrix to the nth power, we obtain(
a b
b a

)n

=
1
2

(
1 1
1 −1

)(
(a + b)n 0

0 (a − b)n

)(
1 1
1 −1

)
.

And multiplying the matrices, we obtain(
a b
b a

)n

=
1
2

(
(a + b)n + (a − b)n (a + b)n − (a − b)n

(a + b)n − (a − b)n (a + b)n + (a − b)n

)
.
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Problems for Lecture 38

1. Determine

(
1 −1

−1 1

)n

, where n is a positive integer.

Solutions to the Problems



Practice Quiz | Matrix
diagonalization

1. Let λ1 and λ2 be distinct eigenvalues of a two-by-two matrix A. Which of the following
cannot be the associated eigenvectors?

a) x1 =

(
1
0

)
, x2 =

(
0
1

)

b) x1 =

(
1

−1

)
, x2 =

(
1
1

)

c) x1 =

(
1

−1

)
, x2 =

(
−1

1

)

d) x1 =

(
1
2

)
, x2 =

(
2
1

)

2. Which matrix is equal to

(
0 1
1 0

)100

?

a)

(
0 0
0 0

)

b)

(
1 1
1 1

)

c)

(
0 1
1 0

)

d)

(
1 0
0 1

)

3. Which matrix is equal to eI, where I is the two-by-two identity matrix?

a)

(
e 0
0 e

)

b)

(
1 0
0 1

)

c)

(
0 e
e 0

)

d)

(
0 1
1 0

)
Solutions to the Practice quiz
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Solutions to the Problems for Lecture 1

1.

a)

1 0 0
0 1 0
0 0 1

 b)

1 0 0 0
0 1 0 0
0 0 1 0

 c)


1 0 0
0 1 0
0 0 1
0 0 0



Solutions to the Problems for Lecture 2

1. B − 2A =

(
0 −4 3
0 −2 −4

)
, 3C − E : not defined, AC : not defined,

CD =

(
11 10
10 11

)
, CB =

(
8 −10 −3

10 −8 0

)
.

2. AB = AC =

(
4 7
8 14

)
.

3. AD =

2 3 4
2 6 12
2 9 16

 , DA =

2 2 2
3 6 9
4 12 16

 .

4. [A(BC)]ij =
n

∑
k=1

aik[BC]kj =
n

∑
k=1

p

∑
l=1

aikbklcl j =
p

∑
l=1

n

∑
k=1

aikbklcl j =
p

∑
l=1

[AB]ilcl j = [(AB)C)]ij.

Solutions to the Problems for Lecture 3

1. In general, matrix multiplication can be written as(
a b
c d

)(
x1

x2

)
=

(
ax1 + bx2

cx1 + dx2

)
= x1

(
a
c

)
+ x2

(
b
d

)
.

Let A =

(
−1 2

4 −8

)
. Notice that the second column of A is −2 times the first column.

Then AB will be zero if the first row of B is 2 times the second row. For example, if we
take our second row of B to be (2 3), then we have(

−1 2
4 −8

)(
4 6
2 3

)
=

(
0 0
0 0

)
.
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2. Let A be an m-by-p diagonal matrix, B a p-by-n diagonal matrix, and let C = AB. The
ij element of C is given by

cij =
p

∑
k=1

aikbkj.

Since A is a diagonal matrix, the only nonzero term in the sum is k = i and we have
cij = aiibij. And since B is a diagonal matrix, the only nonzero elements of C are the
diagonal elements cii = aiibii.

3. Let A and B be n-by-n upper triangular matrices, and let C = AB. The ij element of C
is given by

cij =
n

∑
k=1

aikbkj.

Since A and B are upper triangular, we have aik = 0 when k < i and bkj = 0 when k > j.
Excluding the zero terms from the summation, we have

cij =
j

∑
k=i

aikbkj,

which is equal to zero when i > j proving that C is upper triangular. Furthermore,
cii = aiibii.

Solutions to the Practice quiz: Matrix definitions

1. d. With aij = i − j, we have a11 = a22 = 0, a12 = −1, and a21 = 1. Therefore

A =

(
0 −1
1 0

)
.

2. a.

(
1 −1

−1 1

)(
−1 1

1 −1

)
=

(
−2 2

2 −2

)

3. b. For upper triangular matrices A and B, aik = 0 when k < i and bkj = 0 when k > j.

Solutions to the Problems for Lecture 4

1. Let A be an m-by-p matrix, B a p-by-n matrix. We have

[
(AB)T

]
ij
= [AB]ji =

p

∑
k=1

ajkbki =
p

∑
k=1

bT
ikaT

kj =
[
BTAT

]
ij

.

Therefore, (AB)T = BTAT.
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2. The square matrix A + AT is symmetric, and the square matrix A − AT is skew sym-
metric. Using these two matrices, we can write

A =
1
2

(
A + AT

)
+

1
2

(
A − AT

)
.

3. Let A be a m-by-n matrix. Then using (AB)T = BTAT and (AT)T = A, we have

(ATA)T = ATA.

Solutions to the Problems for Lecture 5

1.

ATA =

(
a b c
d e f

)a d
b e
c f

 =

(
a2 + b2 + c2 ad + be + c f
ad + be + c f d2 + e2 + f 2

)
.

2. Let A be an m-by-n matrix. Then

Tr(ATA) =
n

∑
j=1

(ATA)jj =
n

∑
j=1

m

∑
i=1

aT
jiaij =

m

∑
i=1

n

∑
j=1

a2
ij,

which is the sum of the squares of all the elements of A.

Solutions to the Problems for Lecture 6

1.

(
5 6
4 5

)−1

=

(
5 −6

−4 5

)
and

(
6 4
3 3

)−1

=
1
6

(
3 −4

−3 6

)
.

2. From the definition of an inverse,

(AB)−1(AB) = I, (AB)(AB)−1 = I.

Either multiply on the right by B−1, and then by A−1, or multiply on the left by A−1, and
then by B−1, to obtain

(AB)−1 = B−1A−1.

3. We assume that A is invertible so that

AA−1 = I and A−1A = I.
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Taking the transpose of both sides of these two equations, using both IT = I and (AB)T =

BTAT, we obtain

(AA−1)T = (A−1)TAT = IT = I and (A−1A)T = AT(A−1)T = IT = I.

Therefore, since we have found that

(A−1)TAT = I and AT(A−1)T = I,

we conclude that AT is invertible and that (AT)−1 = (A−1)T.

4. Let A be an invertible matrix, and suppose B and C are its inverse. To prove that B = C,
we write

B = BI = B(AC) = (BA)C = IC = C.

5. Consider the parallelogram drawn below.

The area of the parallelogram is given by

Area = (base)× (height) =
√

a2 + b2
√

c2 + d2 sin θ.

We can use the Pythagorean theorem and the Law of Cosines to determine sin θ. We have

sin θ =
√

1 − cos2 θ,

and
(a − c)2 + (b − d)2 = (a2 + b2) + (c2 + d2)− 2

√
a2 + b2

√
c2 + d2 cos θ.

Simplifying and solving for cos θ, we find

cos θ =
(ac + bd)√

a2 + b2
√

c2 + d2
,

so that
sin θ =

√
1 − cos2 θ =

|ad − bc|√
a2 + b2

√
c2 + d2

.
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The area of the parallelogram is therefore

Area =
√

a2 + b2
√

c2 + d2 sin θ = |ad − bc| =
∣∣∣∣∣det

(
a b
c d

)∣∣∣∣∣ .

Solutions to the Practice quiz: Transpose and inverse

1. d. (ABC)T = ((AB)C)T = CT(AB)T = CTBTAT.

2. c. A symmetric matrix C satisfies CT = C. We can test all four matrices.
(A + AT)T = AT + A = A + AT;
(AAT)T = AAT;
(A − AT)T = AT − A = −(A − AT);
(ATA)T = ATA.
Only the third matrix is not symmetric. It is a skew-symmetric matrix, where CT = −C.

3. a. Exchange the diagonal elements, negate the off-diagonal elements, and divide by the

determinant. We have

(
2 2
1 2

)−1

=
1
2

(
2 −2

−1 2

)
.

Solutions to the Problems for Lecture 7

1. Let Q1 and Q2 be orthogonal matrices. Then

(Q1Q2)
−1 = Q−1

2 Q−1
1 = QT

2 QT
1 = (Q1Q2)

T.

2. Since I I = I, we have I−1 = I. And since IT = I, we have I−1 = IT and I is an orthogonal
matrix.

Solutions to the Problems for Lecture 8

1. R(−θ) =

(
cos θ sin θ

− sin θ cos θ

)
= R(θ)−1.

2. The z-coordinate stays fixed, and the vector rotates an angle θ in the x-y plane. There-
fore,

Rz =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 .
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Solutions to the Problems for Lecture 9

1.

P123 =

1 0 0
0 1 0
0 0 1

 , P132 =

1 0 0
0 0 1
0 1 0

 , P213 =

0 1 0
1 0 0
0 0 1

 ,

P231 =

0 1 0
0 0 1
1 0 0

 , P312 =

0 0 1
1 0 0
0 1 0

 , P321 =

0 0 1
0 1 0
1 0 0

 .

2.
P−1

123 = P123, P−1
132 = P132, P−1

213 = P213, P−1
321 = P321,

P−1
231 = P312, P−1

312 = P231.

The matrices that are their own inverses correspond to either no permutation or a single
permutation of rows, e.g., {1, 3, 2}, which permutes rows two and three. The matrices
that are not their own inverses correspond to two permutations, e.g., {2, 3, 1}, which
permutes rows one and two, and then two and three. For example, commuting rows by
left multiplication, we have

P231 = P132P213,

so that the inverse matrix is given by

P−1
231 = P−1

213P−1
132 = P213P132.

Because matrices in general do not commute, P−1
231 ̸= P231. Note also that the permutation

matrices are orthogonal, so that the inverse matrices are equal to the transpose matrices.
Therefore, only the symmetric permutation matrices can be their own inverses.

Solutions to the Practice quiz: Orthogonal matrices

1. d. An orthogonal matrix has orthonormal rows and columns. The rows and columns of

the matrix

(
1 −1
0 0

)
are not orthonormal and therefore this matrix is not an orthogonal

matrix.

2. a. The rotation matrix representing a counterclockwise rotation around the x-axis
in the y-z plane can be obtained from the rotation matrix representing a counterclock-
wise rotation around the z-axis in the x-y plane by shifting the elements to the right one
column and down one row, assuming a periodic extension of the matrix. The result is1 0 0

0 cos θ − sin θ

0 sin θ cos θ

.
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3. b. Interchange the rows of the identity matrix:

1 0 0
0 1 0
0 0 1

→

0 0 1
1 0 0
0 1 0

.

Solutions to the Problems for Lecture 10

1.

(a) Row reduction of the augmented matrix proceeds as follows: 3 −7 −2 −7
−3 5 1 5

6 −4 0 2

→

3 −7 −2 −7
0 −2 −1 −2
0 10 4 16

→

3 −7 −2 −7
0 −2 −1 −2
0 0 −1 6

 .

Solution by back substitution is given by

x3 = −6,

x2 = −1
2
(x3 − 2) = 4,

x1 =
1
3
(7x2 + 2x3 − 7) = 3.

The solution is therefore x1

x2

x3

 =

 3
4

−6

 .

(b) Row reduction of the augmented matrix proceeds as follows: 1 −2 3 1
−1 3 −1 −1

2 −5 5 1

→

1 −2 3 1
0 1 2 0
0 −1 −1 −1

→

1 −2 3 1
0 1 2 0
0 0 1 −1

 .

Solution by back substitution is given by

x3 = −1,

x2 = −2x3 = 2,

x1 = 2x2 − 3x3 + 1 = 8.

The solution is therefore x1

x2

x3

 =

 8
2

−1

 .
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Solutions to the Problems for Lecture 11

1.

(a) Row reduction proceeds as follows:

A =

 3 −7 −2 −7
−3 5 1 5

6 −4 0 2

→

3 −7 −2 −7
0 −2 −1 −2
0 10 4 16

→

3 0 3/2 0
0 −2 −1 −2
0 0 −1 6



→

3 0 0 9
0 −2 0 −8
0 0 −1 6

→

1 0 0 3
0 1 0 4
0 0 1 −6

 .

Here, columns one, two, and three are pivot columns.

(b) Row reduction proceeds as follows:

A =

1 2 1
2 4 1
3 6 2

→

1 2 1
0 0 −1
0 0 −1

→

1 2 1
0 0 1
0 0 −1

→

1 2 0
0 0 1
0 0 0

 .

Here, columns one and three are pivot columns.

Solutions to the Problems for Lecture 12

1.  3 −7 −2 1 0 0
−3 5 1 0 1 0

6 −4 0 0 0 1

→

 3 −7 −2 1 0 0
0 −2 −1 1 1 0
0 10 4 −2 0 1

→

3 0 3/2 −5/2 −7/2 0
0 −2 −1 1 1 0
0 0 −1 3 5 1

→

3 0 0 2 4 3/2
0 −2 0 −2 −4 −1
0 0 −1 3 5 1



→

1 0 0 2/3 4/3 1/2
0 1 0 1 2 1/2
0 0 1 −3 −5 −1

 .

Therefore,  3 −7 −2
−3 5 1

6 −4 0


−1

=

2/3 4/3 1/2
1 2 1/2

−3 −5 −1

 .
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Solutions to the Practice quiz: Gaussian elimination

1. a.

1 −2 1 0
2 1 −3 5
4 −7 1 −2

→

1 −2 1 0
0 5 −5 5
0 1 −3 −2

→

1 −2 1 0
0 1 −1 1
0 1 −3 −2


→

1 −2 1 0
0 1 −1 1
0 0 −2 −3

.

2. c. A matrix in reduced row echelon form has all its pivots equal to one, and all the
entries above and below the pivots eliminated. The only matrix that is not in reduced row

echelon form is

1 0 1 0
0 1 0 0
0 0 1 1

. The pivot in the third row, third column has a one above

it in the first row, third column.

3. d. There are many ways to do this computation by hand, and here is one way: 3 −7 −2 1 0 0
−3 5 1 0 1 0

6 −4 0 0 0 1

→

3 −7 −2 1 0 0
0 −2 −1 1 1 0
0 10 4 −2 0 1

→

3 −7 −2 1 0 0
0 −2 −1 1 1 0
0 0 −1 3 5 1


→

3 −7 0 −5 −10 −2
0 −2 −1 1 1 0
0 0 1 −3 −5 −1

→

3 −7 0 −5 −10 −2
0 −2 0 −2 −4 −1
0 0 1 −3 −5 −1


→

3 0 0 2 4 3/2
0 1 0 1 2 1/2
0 0 1 −3 −5 −1

→

1 0 0 2/3 4/3 1/2
0 1 0 1 2 1/2
0 0 1 −3 −5 −1

 .

Therefore,

 3 −7 −2
−3 5 1

6 −4 0


−1

=

2/3 4/3 1/2
1 2 1/2

−3 −5 −1

.

Solutions to the Problems for Lecture 13

1.

M =


1 0 0 0
0 1 0 0
0 0 1 0
0 2 0 1

 .

Solutions to the Problems for Lecture 14

1.  3 −7 −2
−3 5 1

6 −4 0

→

 3 −7 −2
0 −2 −1
6 −4 0

 =

1 0 0
1 1 0
0 0 1


 3 −7 −2
−3 5 1

6 −4 0





PROBLEM AND PRACTICE QUIZ SOLUTIONS 116

 3 −7 −2
0 −2 −1
6 −4 0

→

3 −7 −2
0 −2 −1
0 10 4

 =

 1 0 0
0 1 0

−2 0 1


 3 −7 −2

0 −2 −1
6 −4 0


3 −7 −2

0 −2 −1
0 10 4

→

3 −7 −2
0 −2 −1
0 0 −1

 =

1 0 0
0 1 0
0 5 1


3 −7 −2

0 −2 −1
0 10 4


Therefore,  3 −7 −2

−3 5 1
6 −4 0

 =

 1 0 0
−1 1 0

2 −5 1


3 −7 −2

0 −2 −1
0 0 −1

 .

Solutions to the Problems for Lecture 15

1. We know

A =

 3 −7 −2
−3 5 1

6 −4 0

 =

 1 0 0
−1 1 0

2 −5 1


3 −7 −2

0 −2 −1
0 0 −1

 = LU.

To solve LUx = b, we let y = Ux, solve Ly = b for y, and then solve Ux = y for x.

(a)

b =

−3
3
2


The equations Ly = b are given by

y1 = −3,

−y1 + y2 = 3,

2y1 − 5y2 + y3 = 2,

with solution y1 = −3, y2 = 0, and y3 = 8. The equations Ux = y are given by

3x1 − 7x2 − 2x3 = −3

−2x2 − x3 = 0

−x3 = 8,

with solution x3 = −8, x2 = 4, and x1 = 3.

(b)

b =

 1
−1

1


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The equations Ly = b are given by

y1 = 1,

−y1 + y2 = −1,

2y1 − 5y2 + y3 = 1,

with solution y1 = 1, y2 = 0, and y3 = −1. The equations Ux = y are given by

3x1 − 7x2 − 2x3 = 1

−2x2 − x3 = 0

−x3 = −1,

with solution x3 = 1, x2 = −1/2, and x1 = −1/6.

Solutions to the Practice quiz: LU decomposition

1. c. Start with the identity matrix. In the third row (changed row) and second column

(the row which is multiplied by 2) , place a 2. The elementary matrix is


1 0 0 0
0 1 0 0
0 2 1 0
0 0 0 1

.

2. b.

A =

 3 −7 −2
−3 5 1

6 −4 0

→

3 −7 −2
0 −2 −1
6 −4 0

 = M1A, where M1 =

1 0 0
1 1 0
0 0 1

 ;

3 −7 −2
0 −2 −1
6 −4 0

→

3 −7 −2
0 −2 −1
0 10 4

 = M2M1A, where M2 =

 1 0 0
0 1 0

−2 0 1

 ;

3 −7 −2
0 −2 −1
0 10 4

→

3 −7 −2
0 −2 −1
0 0 −1

 = M3M2M1A, where M3 =

 1 0 0
0 1 0
0 5 1

 .

Therefore,

A =

 1 0 0
−1 1 0

2 −5 1


3 −7 −2

0 −2 −1
0 0 −1

 .

3. b. To solve LUx = b, let y = Ux. Then solve Ly = b for y and Ux = y for x. The
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equations given by Ly = b are

y1 = 1,

−y1 + y2 = −1,

2y1 − 5y2 + y3 = 1.

Solution by forward substitution gives y =

 1
0

−1

. The equations given by Ux = y are

3x1 − 7x2 − 2x3 = 1,

−2x2 − x3 = 0,

−x3 = −1.

Solution by backward substitution gives x =

−1/6
−1/2

1

.

Solutions to the Problems for Lecture 16

1. Let v be a vector in the vector space. Then both 0v and v + (−1)v must be vectors in
the vector space and both of them are the zero vector.

2. In all of the examples, the vector spaces are closed under scalar multiplication and
vector addition.

Solutions to the Problems for Lecture 17

1.

(a) We place the vectors as the rows of a matrix and compute the reduced row echelon
form: 1 1 0

1 0 1
0 1 1

→

1 1 0
0 −1 1
0 1 1

→

1 0 1
0 1 −1
0 0 2

→

1 0 0
0 1 0
0 0 1

 .

Because the reduced row echelon form is the identity matrix, the vectors are linearly
independent.

(b) We place the vectors as the rows of a matrix and compute the reduced row echelon
form:−1 1 1

1 −1 1
1 1 −1

→

1 −1 −1
0 0 2
0 2 0

→

1 −1 −1
0 1 0
0 0 1

→

1 0 0
0 1 0
0 0 1

 .
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Because the reduced row echelon form is the identity matrix, the vectors are linearly
independent.

(c) By inspection, 1
1
1

 =

0
1
0

+

1
0
1

 .

The vectors are therefore linearly dependent.

Solutions to the Problems for Lecture 18

1. One possible orthonormal basis is1
2

 1
1√
2

 ,
1
2

 1
1

−
√

2


 .

The dimension of this vector space is two.

Solutions to the Practice quiz: Vector space definitions

1. b. A vector space must be closed under vector addition and scalar multiplication. The
set of three-by-one matrices with the sum of all rows equal to one is not a closed set. For
example, k times a vector whose sum of all rows is equal to one results in a vector whose
sum of all rows is equal to k.

2. d. One can find the relations1
0
0

−

0
1
0

 =

 1
−1

0

 , 8

 1
−1

2

+ 3

 4
6

−2

 = 10

2
1
1

 ,

 1
0

−1

−

 1
−1

0

 =

 0
1

−1

 ,

so that these sets of three matrices are linearly dependent. The remaining set of vectors
can be put in the rows of a matrix and the reduced row echelon form can be computed:3 2 1

3 1 2
2 1 0

→

3 2 1
0 −1 1
0 −1/3 −2/3

→

3 0 3
0 1 −1
0 0 −1

→

1 0 0
0 1 0
0 0 1

 .

Because the reduced row echelon form is the identity matrix, the vectors are linearly
independent.

3. b. Since a three-by-one matrix has three degrees of freedom, and the constraint that the
sum of all rows equals zero eliminates one degree of freedom, the basis should consist of
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two vectors. We can arbitrarily take the first unnormalized vector to be

 1
−1

0

. The vector

orthogonal to this first vector with sum of all rows equal to zero is

 1
1

−2

. Normalizing

both of these vectors, we get

 1√
2

 1
−1

0

 ,
1√
6

 1
1

−2


 .

Solutions to the Problems for Lecture 19

1.

u4 = v4 −
(uT

1 v4)u1

uT
1 u1

−
(uT

2 v4)u2

uT
2 u2

−
(uT

3 v4)u3

uT
3 u3

.

Solutions to the Problems for Lecture 20

1. Define

{v1, v2} =


 0

1
−1

 ,

 1
1

−1


 .

Let u1 = v1. Then u2 is found from

u2 = v2 −
(uT

1 v2)u1

uT
1 u1

=

 1
1

−1

−

 0
1

−1

 =

1
0
0

 .

Normalizing, we obtain the orthonormal basis

{û1, û2} =

 1√
2

 0
1

−1

 ,

1
0
0


 .

2. Define

{v1, v2, v3} =




1
1
1
1

 ,


0
1
1
1

 ,


0
0
1
1


 .
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Let u1 = v1. Then u2 is found from

u2 = v2 −
(uT

1 v2)u1

uT
1 u1

=


0
1
1
1

− 3
4


1
1
1
1

 =
1
4


−3

1
1
1

 ;

and u3 is found from

u3 = v3 −
(uT

1 v3)u1

uT
1 u1

−
(uT

2 v3)u2

uT
2 u2

=


0
0
1
1

− 1
2


1
1
1
1

− 1
6


−3

1
1
1

 =
1
3


0

−2
1
1

 .

Normalizing the three vectors, we obtain the orthonormal basis

{û1, û2, û3} =


1
2


1
1
1
1

 ,
1

2
√

3


−3

1
1
1

 ,
1√
6


0

−2
1
1


 .

Solutions to the Practice quiz: Gram-Schmidt process

1. a. The vector u4 is orthogonal to u1, u2, and u3. Since u1 = v1, then u4 is orthogonal to
v1.

2. a. Since the vectors are already orthogonal, we need only normalize them to find

{û1, û2} =

{
1
√

2

(
1
1

)
,

1
√

2

(
1

−1

)}
.

3. b. Let u1 = v1 =

 1
1

−1

. Then,

u2 = v2 −
(uT

1 v2)u1

uT
1 u1

=

 0
1

−1

− 2
3

 1
1

−1

 =
1
3

−2
1

−1

 .
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Normalizing the vectors, we have

{û1, û2} =

 1
√

3

 1
1

−1

 ,
1
√

6

−2
1

−1


 .

Solutions to the Problems for Lecture 21

1. We bring A to reduced row echelon form:1 1 1 0
1 1 0 1
1 0 1 1

→

1 1 1 0
0 0 −1 1
0 −1 0 1

→

1 1 1 0
0 −1 0 1
0 0 −1 1

→

1 1 1 0
0 1 0 −1
0 0 1 −1



→

1 0 1 1
0 1 0 −1
0 0 1 −1

→

1 0 0 2
0 1 0 −1
0 0 1 −1

 .

The equation Ax = 0 with the pivot variables on the left-hand sides is given by

x1 = −2x4, x2 = x4, x3 = x4,

and a general vector in the nullspace can be written as


−2x4

x4

x4

x4

 = x4


−2

1
1
1

. A basis for

the null space is therefore given by the single vector


−2

1
1
1

.

Solutions to the Problems for Lecture 22

1. The system in matrix form is given by−3 6 −1 1
1 −2 2 3
2 −4 5 8


x1

x2

x3

 =

−7
−1
−4

 .

We form the augmented matrix and bring the first four columns to reduced row echelon
form: −3 6 −1 1 −7

1 −2 2 3 −1
2 −4 5 8 −4

→

1 −2 0 −1 3
0 0 1 2 −2
0 0 0 0 0

 .
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The null space is found from the first four columns solving Au = 0, and writing the basic
variables on the left-hand side, we have the system

u1 = 2u2 + u4, u3 = −2u4;

from which we can write the general form of the null space as
2u2 + u4

u2

−2u4

u4

 = u2


2
1
0
0

+ u4


1
0

−2
1

 .

A particular solution is found by solving Av = b, and we have

v1 − 2v2 − v4 = 3, v3 + 2v4 = −2.

The free variables v2 and v4 can be set to zero, and the particular solution is determined to
be v1 = 3 and v3 = −2. The general solution to the underdetermined system of equations
is therefore given by

x = a


2
1
0
0

+ b


1
0

−2
1

+


3
0

−2
0

 .

Solutions to the Problems for Lecture 23

1. We find

A =

1 1 1 0
1 1 0 1
1 0 1 1

 , rref(A) =

1 0 0 2
0 1 0 −1
0 0 1 −1

 ,

and dim(Col(A)) = 3, with a basis for the column space given by the first three columns
of A.

Solutions to the Problems for Lecture 24

1. We find the reduced row echelon from of A and AT:

A =


2 3 −1 1 2

−1 −1 0 −1 1
1 2 −1 1 1
1 −2 3 −1 −3

→


1 0 1 0 −1
0 1 −1 0 2
0 0 0 1 −2
0 0 0 0 0

 .
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AT =


2 −1 1 1
3 −1 2 −2

−1 0 −1 3
1 −1 1 −1
2 1 1 −3

→


1 0 0 2
0 1 0 −2
0 0 1 −5
0 0 0 0
0 0 0 0


Columns one, two, and four are pivot columns of A and columns one, two, and three are
pivot columns of AT. Therefore, the column space of A is given by

Col(A) = span




2

−1
1
1

 ,


3

−1
2

−2

 ,


1

−1
1

−1


 ;

and the row space of A (the column space of AT) is given by

Row(A) = span




2
3

−1
1
2

 ,


−1
−1

0
−1

1

 ,


1
2

−1
1
1




.

The null space of A are found from the equations

x1 = −x3 + x5, x2 = x3 − 2x5, x4 = 2x5,

and a vector in the null space has the general form
−x3 + x5

x3 − 2x5

x3

2x5

x5

 = x3


−1

1
1
0
0

+ x5


1

−2
0
2
1

 .

Therefore, the null space of A is given by

Null(A) = span




−1

1
1
0
0

 ,


1

−2
0
2
1




.

The null space of AT are found from the equations

x1 = −2x4, x2 = 2x4, x3 = 5x4,
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and a vector in the null space has the general form
−2x4

2x4

5x4

x4

 = x4


−2

2
5
1

 .

Therefore, the left null space of A is given by

LeftNull(A) = span




−2

2
5
1


 .

It can be checked that the null space is the orthogonal complement of the row space and
the left null space is the orthogonal complement of the column space. The rank(A) = 3,
and A is not of full rank.

Solutions to the Practice quiz: Fundamental subspaces

1. d. To find the null space of a matrix, bring it to reduced row echelon form. We have1 2 0 1
2 4 1 1
3 6 1 1

→

1 2 0 1
0 0 1 −1
0 0 1 −2

→

1 2 0 1
0 0 1 −1
0 0 0 −1

→

1 2 0 0
0 0 1 0
0 0 0 1

 .

With x1 = −2x2, x3 = 0, and x4 = 0, a basis for the null space is




−2

1
0
0


.

2. b. This system of linear equations is underdetermined, and the solution will be a
general vector in the null space of the multiplying matrix plus a particular vector that
satisfies the underdetermined system of equations. The linear system in matrix form is
given by 1 2 0 1

2 4 1 1
3 6 1 1




x1

x2

x3

x4

 =

1
1
1

 .

We bring the augmented matrix to reduced row echelon form:1 2 0 1 1
2 4 1 1 1
3 6 1 1 1

→

1 2 0 1 1
0 0 1 −1 −1
0 0 1 −2 −2

→

1 2 0 1 1
0 0 1 −1 −1
0 0 0 −1 −1

→

1 2 0 0 0
0 0 1 0 0
0 0 0 1 1

 .
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A basis for the null space is




−2

1
0
0


, and a particular solution can be found by setting

the free variable x2 = 0. Therefore, x1 = x3 = 0 and x4 = 1, and the general solution is
x1

x2

x3

x4

 = a


−2

1
0
0

+


0
0
0
1

 ,

where a is a free constant.

3. c. The matrix in reduced row echelon form is

1 2 0 1
2 4 1 1
3 6 1 1

 →

1 2 0 0
0 0 1 0
0 0 0 1

 . The

number of pivot columns is three, and this is the rank.

Solutions to the Problems for Lecture 25

1. We first use the Gram-Schmidt process to find an orthonormal basis for W. We assign

u1 =
(

1 1 1
)T

. Then,

u2 =

0
1
1

−

(
1 1 1

)0
1
1


(

1 1 1
)1

1
1



1
1
1



=

0
1
1

− 2
3

1
1
1

 =
1
3

−2
1
1

 .

An orthonormal basis for W is therefore

s1 =
1√
3

1
1
1

 , s2 =
1√
6

−2
1
1

 .

The projection of v onto W is then given by

vprojW = (vTs1)s1 + (vTs2)s2 =
1
3
(a + b + c)

1
1
1

+
1
6
(−2a + b + c)

−2
1
1

 .
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When a = 1, b = c = 0, we have

vprojW =
1
3

1
1
1

− 1
3

−2
1
1

 =

1
0
0

 ;

and when b = 1, a = c = 0, we have

vprojW =
1
3

1
1
1

+
1
6

−2
1
1

 =
1
2

0
1
1

 .

Solutions to the Problems for Lecture 26

1. 
1 0
1 1
1 2
1 3


(

β0

β1

)
=


1
3
3
4



Solutions to the Problems for Lecture 27

1. The normal equations are given by

(
1 1 1 1
0 1 2 3

)
1 0
1 1
1 2
1 3


(

β0

β1

)
=

(
1 1 1 1
0 1 2 3

)
1
3
3
4

 ,

or (
4 6
6 14

)(
β0

β1

)
=

(
11
21

)
.

The solution is β0 = 7/5 and β1 = 9/10, and the least-squares line is given by y =

7/5 + 9x/10.

Solutions to the Practice quiz: Orthogonal projections

1. b. We first normalize the vectors in W to obtain the orthonormal basis

w1 =
1
√

2

 0
1

−1

 , w2 =
1
√

6

−2
1
1

 .
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Then the orthogonal projection of v =

0
0
1

 onto W is given by

vprojW = (vTw1)w1 + (vTw2)w2 = −1
2

 0
1

−1

+
1
6

−2
1
1

 =
1
3

−1
−1

2

 .

2. d. The overdetermined system of equations is given by

β0 + β1x1 = y1,

β0 + β1x2 = y2,

β0 + β1x3 = y3.

Substituting in the values for x and y, and writing in matrix form, we have1 1
1 2
1 3

(β0

β1

)
=

1
1
3

 .

3. b. The normal equations are given by

(
1 1 1
1 2 3

)1 1
1 2
1 3

(β0

β1

)
=

(
1 1 1
1 2 3

)1
1
3

 .

Multiplying out, we have (
3 6
6 14

)(
β0

β1

)
=

(
5

12

)
.

Inverting the two-by-two matrix, we have(
β0

β1

)
=

1
6

(
14 −6
−6 3

)(
5
12

)
=

1
6

(
−2

6

)
.

The best fit line is therefore y = −1
3
+ x.

Solutions to the Problems for Lecture 28

1. ∣∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣∣ = 1 × 1 × 1 = 1.
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2.

∣∣∣∣∣∣∣
d e f
a b c
g h i

∣∣∣∣∣∣∣ = dbi + ecg + f ah − f bg − eai − dch

= −(aei + b f g + cdh − ceg − bdi − a f h) = −

∣∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣∣ .

3. Let

A =

(
a b
c d

)
, B =

(
e f
g h

)
.

Then

AB =

(
ae + bg a f + bh
ce + dg c f + dh

)
,

and

det AB = (ae + bg)(c f + dh)− (a f + bh)(ce + dg)

= (ace f + adeh + bc f g + bdgh)− (ace f + ad f g + bceh + bdgh)

= (adeh + bc f g)− (ad f g + bceh)

= ad(eh − f g)− bc(eh − f g)

= (ad − bc)(eh − f g)

= det A det B.

Solutions to the Problems for Lecture 29

1. We first expand in minors across the fourth row:∣∣∣∣∣∣∣∣∣∣∣∣

6 3 2 4 0
9 0 4 1 0
8 −5 6 7 −2

−2 0 0 0 0
4 0 3 2 0

∣∣∣∣∣∣∣∣∣∣∣∣
= 2

∣∣∣∣∣∣∣∣∣∣
3 2 4 0
0 4 1 0

−5 6 7 −2
0 3 2 0

∣∣∣∣∣∣∣∣∣∣
.

We then expand in minors down the fourth column:

2

∣∣∣∣∣∣∣∣∣∣
3 2 4 0
0 4 1 0

−5 6 7 −2
0 3 2 0

∣∣∣∣∣∣∣∣∣∣
= 4

∣∣∣∣∣∣∣
3 2 4
0 4 1
0 3 2

∣∣∣∣∣∣∣ .
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Finally, we expand in minors down the first column:

4

∣∣∣∣∣∣∣
3 2 4
0 4 1
0 3 2

∣∣∣∣∣∣∣ = 12

∣∣∣∣∣4 1
3 2

∣∣∣∣∣ = 60.

Solutions to the Problems for Lecture 30

1. For each element chosen from the first row, there is only a single way to choose nonzero
elements from all subsequent rows. Considering whether the columns chosen are even or
odd permutations of the ordered set {1, 2, 3, 4}, we obtain∣∣∣∣∣∣∣∣∣∣

a b c d
e f 0 0
0 g h 0
0 0 i j

∣∣∣∣∣∣∣∣∣∣
= a f hj − behj + cegj − degi.

Solutions to the Problems for Lecture 31

1. Suppose the square matrix A has two equal rows. If we interchange these two rows, the
determinant of A changes sign according to Property 2, even though A doesn’t change.
Therefore, det A = −det A, or det A = 0.

2. To prove that the determinant is a linear function of row i, interchange rows 1 and row
i using Property 2. Use Property 3, then interchange rows 1 and row i again.

3. Consider a general n-by-n matrix. Using the linear property of the jth row, and that a
matrix with two equal rows has zero determinant, we have

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

...
. . .

...
ai1 . . . ain
...

. . .
...

aj1 + kai1 . . . ajn + kain
...

. . .
...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

...
. . .

...
ai1 . . . ain
...

. . .
...

aj1 . . . ajn
...

. . .
...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

...
. . .

...
ai1 . . . ain
...

. . .
...

ai1 . . . ain
...

. . .
...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

...
. . .

...
ai1 . . . ain
...

. . .
...

aj1 . . . ajn
...

. . .
...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Therefore, the determinant doesn’t change by adding k times row-i to row-j.

4. ∣∣∣∣∣∣∣
2 0 −1
3 1 1
0 −1 1

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
2 0 −1
0 1 5/2
0 −1 1

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
2 0 −1
0 1 5/2
0 0 7/2

∣∣∣∣∣∣∣ = 2 × 1 × 7/2 = 7.
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Solutions to the Practice quiz: Determinants

1. a. To find the determinant of a matrix with many zero elements, perform a Laplace
expansion across the row or down the column with the most zeros. Choose the correct
sign. We have for one expansion choice,

∣∣∣∣∣∣∣∣∣∣∣∣

−3 0 −2 0 0
2 −2 −2 0 0
0 0 −2 0 0
3 0 −3 2 −3

−3 3 3 0 −2

∣∣∣∣∣∣∣∣∣∣∣∣
= 2

∣∣∣∣∣∣∣∣∣∣
−3 0 −2 0

2 −2 −2 0
0 0 −2 0

−3 3 3 −2

∣∣∣∣∣∣∣∣∣∣
= −4

∣∣∣∣∣∣∣
−3 0 −2

2 −2 −2
0 0 −2

∣∣∣∣∣∣∣
= 8

∣∣∣∣∣−3 0
2 −2

∣∣∣∣∣ = 48.

2. b. We can apply the Leibniz formula by going down the first column. For each element
in the first column there is only one possible choice of elements from the other three
columns. We have 

a e 0 0
b f g 0
c 0 h i
d 0 0 j

 = a f hj − behj + cegj − degi.

The signs are obtained by considering whether the following permutations of the rows
{1, 2, 3, 4} are even or odd: a f hj = {1, 2, 3, 4} (even); behj = {2, 1, 3, 4} (odd); cegj =

{3, 1, 2, 4} (even); degi = {4, 1, 2, 3} (odd).

3. c. The only identity which is false is det (A + B) = det A + det B.

Solutions to the Problems for Lecture 32

1. The characteristic equation is given by

0 = det(A − λI) =

∣∣∣∣∣∣∣
a − λ b c

d e − λ f
g h i − λ

∣∣∣∣∣∣∣
= (a − λ)(e − λ)(i − λ) + b f g + cdh − c(e − λ)g − bd(i − λ)− (a − λ) f h

= −λ3 +(a+ e+ i)λ2 − (ae+ ai+ ei− bd− cg− f h)λ+ aei+ b f g+ cdh− ceg− bdi− a f h.

The result can be made more memorable if we recall that

Tr{A} = a + e + i, det A = aei + b f g + cdh − ceg − bdi − a f h.
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The coefficient of the λ term can be rewritten as

ae + ai + ei − bd − cg − f h = (ei − f h) + (ai − cg) + (ae − bd) =

∣∣∣∣∣e f
h i

∣∣∣∣∣+
∣∣∣∣∣a c
g i

∣∣∣∣∣+
∣∣∣∣∣a b
d e

∣∣∣∣∣ ,

which are the sum of the minors obtained by crossing out the rows and columns of the
diagonal elements. The cubic equation in more memorable form is therefore

λ3 − Tr{A}λ2 + ∑(minors of the diagonal elements of A)λ − det A = 0.

Solutions to the Problems for Lecture 33

1. Let A =

(
2 7
7 2

)
. The eigenvalues of A are found from

0 = det (A − λI) =

∣∣∣∣∣2 − λ 7
7 2 − λ

∣∣∣∣∣ = (2 − λ)2 − 49.

Therefore, 2 − λ = ±7, and the eigenvalues are λ1 = −5, λ2 = 9. The eigenvector for
λ1 = −5 is found from (

7 7
7 7

)(
x1

x2

)
= 0,

or x1 + x2 = 0. The eigenvector for λ2 = 9 is found from(
−7 7

7 −7

)(
x1

x2

)
= 0,

or x1 − x2 = 0. The eigenvalues and corresponding eigenvectors are therefore given by

λ1 = −5, x1 =

(
1

−1

)
; λ2 = 9, x2 =

(
1
1

)
.

2. Let A =

2 1 0
1 2 1
0 1 2

. The eigenvalues of A are found from

0 = det (A − λI) =

∣∣∣∣∣∣∣
2 − λ 1 0

1 2 − λ 1
0 1 2 − λ

∣∣∣∣∣∣∣ = (2 − λ)
(
(2 − λ)2 − 2

)
.

Therefore, λ1 = 2, λ2 = 2 −
√

2, and λ3 = 2 +
√

2. The eigenvector for λ1 = 2 are found
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from 0 1 0
1 0 1
0 1 0


x1

x2

x3

 = 0,

or x2 = 0 and x1 + x3 = 0, or x1 =

 1
0

−1

. The eigenvector for λ2 = 2−
√

2 is found from


√

2 1 0
1

√
2 1

0 1
√

2


x1

x2

x3

 = 0.

Gaussian elimination gives us

rref


√

2 1 0
1

√
2 1

0 1
√

2

 =

1 0 −1
0 1

√
2

0 0 0

 .

Therefore, x1 = x3 and x2 = −
√

2x3 and an eigenvector is x2 =

 1
−
√

2
1

. Similarly, the

third eigenvector is x3 =

 1√
2
1

.

Solutions to the Problems for Lecture 34

34. Let A =

(
1 1

−1 1

)
. The eigenvalues of A are found from

0 = det (A − λI) =

∣∣∣∣∣1 − λ 1
−1 1 − λ

∣∣∣∣∣ = (1 − λ)2 + 1.

Therefore, 1 − λ = ±i, and the eigenvalues are λ1 = 1 − i, λ2 = 1 + i.

Solutions to the Practice quiz: The eigenvalue problem

1. b. The characteristic equation det (A − λI) = 0 for a two-by-two matrix A results in the
quadratic equation λ2 − TrA λ + det A = 0, which for the given matrix yields λ2 − 3λ + 1 = 0.

Application of the quadratic formula results in λ± =
3 ±

√
9 − 4

2
=

3
2
±

√
5

2
.

2. d. The characteristic equation is det (A − λI) =

∣∣∣∣∣3 − λ −1
1 3 − λ

∣∣∣∣∣ = (3 − λ)2 + 1 = 0.

With i =
√
−1, the solution is λ± = 3 ± i.
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3. b. One can either compute the eigenvalues and eigenvectors of the matrix, or test the
given possible answers. If we test the answers, then only one is an eigenvector, and we
have 2 1 0

1 2 1
0 1 2


 1√

2
1

 =

 2 +
√

2
2 + 2

√
2√

2 + 2

 = (2 +
√

2)

 1√
2
1

 .

Solutions to the Problems for Lecture 35

1. Let λ1 and λ2 be distinct eigenvalues of A, with corresponding eigenvectors x1 and x2.
Write

c1x1 + c2x2 = 0.

To prove that x1 and x2 are linearly independent, we need to show that c1 = c2 = 0.
Multiply the above equation on the left by A and use Ax1 = λ1x1 and Ax2 = λ2x2 to
obtain

c1λ1x1 + c2λ2x2 = 0.

From the first equation, we write c2x2 = −c1x1, and eliminating c2x2 from the second
equation we obtain

(λ1 − λ2)c1x1 = 0.

From the first equation, we can also write c1x1 = −c2x2, and eliminating c1x1 from the
second equation we obtain

(λ2 − λ1)c2x2 = 0.

Therefore, if λ1 ̸= λ2, then c1 = c2 = 0 and x1 and x2 are linearly independent.

2. Let A be an n-by-n matrix. We have

dim(Col(A)) + dim(Null(A)) = n.

Since the columns of A are linearly independent, we have

dim(Col(A)) = n and dim(Null(A)) = 0.

If the only solution to Ax = 0 is the zero vector, then det A ̸= 0 and A is invertible.

Solutions to the Problems for Lecture 36

1. The eigenvalues and eigenvectors of A =

2 1 0
1 2 1
0 1 2

 are

λ1 = 2, x1 =

 1
0

−1

 ; λ2 = 2 −
√

2, x2 =

 1
−
√

2
1

 ; λ3 = 2 +
√

2, x3 =

 1√
2
1

 .
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Notice that the three eigenvectors are mutually orthogonal. This will happen when the
matrix is symmetric. If we normalize the eigenvectors, the matrix with eigenvectors as
columns will be an orthogonal matrix. Normalizing the orthogonal eigenvectors (so that
S−1 = ST) , we have

S =

 1/
√

2 1/2 1/2
0 −1/

√
2 1/

√
2

−1/
√

2 1/2 1/2

 .

We therefore find2 0 0
0 2 −

√
2 0

0 0 2 +
√

2



=

1/
√

2 0 −1/
√

2
1/2 −1/

√
2 1/2

1/2 1/
√

2 1/2


2 1 0

1 2 1
0 1 2


 1/

√
2 1/2 1/2

0 −1/
√

2 1/
√

2
−1/

√
2 1/2 1/2

 .

Solutions to the Problems for Lecture 37

1.

eA = eSΛS−1

= I + SΛS−1 +
SΛ2S−1

2!
+

SΛ3S−1

3!
+ . . .

= S
(

I + Λ +
Λ2

2!
+

Λ3

3!
+ . . .

)
S−1

= SeΛS−1.

Because Λ is a diagonal matrix, the powers of Λ are also diagonal matrices with the
diagonal elements raised to the specified power. Each diagonal element of eΛ contains a
power series of the form

1 + λi +
λ2

i
2!

+
λ3

i
3!

+ . . . ,

which is the power series for eλi .

Solutions to the Problems for Lecture 38

1. We use the result(
a b
b a

)n

=
1
2

(
(a + b)n + (a − b)n (a + b)n − (a − b)n

(a + b)n − (a − b)n (a + b)n + (a − b)n

)

to find (
1 −1

−1 1

)n

=

(
2n−1 −2n−1

−2n−1 2n−1

)
.



PROBLEM AND PRACTICE QUIZ SOLUTIONS 136

Solutions to the Practice quiz: Matrix diagonalization

1. c. Eigenvectors with distinct eigenvalues must be linearly independent. All the listed

pairs of eigenvectors are linearly independent except x1 =

(
1

−1

)
and x2 =

(
−1

1

)
, where

x2 = −x1.

2. d. A simple calculation shows that

(
0 1
1 0

)2

=

(
1 0
0 1

)
= I.

Therefore, (
0 1
1 0

)100

=

(0 1
1 0

)2
50

= I50 = I.

A more complicated calculation diagonalizes this symmetric matrix. The eigenvalues
and orthonormal eigenvectors are found to be

λ1 = 1, v1 =
1√
2

(
1
1

)
and λ2 = −1, v2 =

1√
2

(
1

−1

)
.

The diagonalization then takes the form(
0 1
1 0

)
=

1
2

(
1 1
1 −1

)(
1 0
0 −1

)(
1 1
1 −1

)
.

Then,

(
0 1
1 0

)100

=
1
2

(
1 1
1 −1

)(
1 0
0 −1

)100(
1 1
1 −1

)

=
1
2

(
1 1
1 −1

)(
1 0
0 1

)(
1 1
1 −1

)
= I.

3. a. We have

eI = I + I +
I2

2!
+

I3

3!
+ · · · = I

(
1 + 1 +

1
2!

+
1
3!

+ . . .
)
= Ie1 =

(
e 0
0 e

)
.


	I Matrices
	Definition of a matrix
	Addition and multiplication of matrices
	Special matrices
	 Practice quiz: Matrix definitions
	Transpose matrix
	Inner and outer products
	Inverse matrix
	 Practice quiz: Transpose and inverse
	Orthogonal matrices
	Rotation matrices
	Permutation matrices
	 Practice quiz: Orthogonal matrices

	II Systems of Linear Equations
	Gaussian elimination
	Reduced row echelon form
	Computing inverses
	 Practice quiz: Gaussian elimination
	Elementary matrices
	LU decomposition
	Solving (LU)x = b
	 Practice quiz: LU decomposition

	III Vector Spaces
	Vector spaces
	Linear independence
	Span, basis and dimension
	 Practice quiz: Vector space definitions
	Gram-Schmidt process
	Gram-Schmidt process (example)
	 Practice quiz: Gram-Schmidt process
	Null space
	Application of the null space
	Column space
	Row space, left null space and rank
	 Practice quiz: Fundamental subspaces
	Orthogonal projections
	The least-squares problem
	Solution of the least-squares problem
	 Practice quiz: Orthogonal projections

	IV Eigenvalues and Eigenvectors
	Two-by-two and three-by-three determinants
	Laplace expansion
	Leibniz formula
	Properties of a determinant
	 Practice quiz: Determinants
	The eigenvalue problem
	Finding eigenvalues and eigenvectors (Part A)
	Finding eigenvalues and eigenvectors (Part B)
	 Practice quiz: The eigenvalue problem
	Matrix diagonalization
	Matrix diagonalization (example)
	Powers of a matrix
	Powers of a matrix (example)
	 Practice quiz: Matrix diagonalization

	Problem and practice quiz solutions

