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OVERVIEW In this chapter we study new ways to define curves in the plane. Instead of 
thinking of a curve as the graph of a function or equation, we consider a more general way 
of thinking of a curve as the path of a moving particle whose position is changing over 
time. Then each of the x- and y-coordinates of the particle’s position becomes a function of 
a third variable t. We can also change the way in which points in the plane themselves are 
described by using polar coordinates rather than the rectangular or Cartesian system. Both 
of these new tools are useful for describing motion, like that of planets and satellites, or 
projectiles moving in the plane or space. In addition, we review the geometric definitions 
and standard equations of parabolas, ellipses, and hyperbolas. These curves are called 
conic sections, or conics, and model the paths traveled by projectiles, planets, or any other 
object moving under the sole influence of a gravitational or electromagnetic force.

11.1 Parametrizations of Plane Curves

In previous chapters, we have studied curves as the graphs of functions or of equations 
involving the two variables x and y. We are now going to introduce another way to describe 
a curve by expressing both coordinates as functions of a third variable t.

Parametric Equations

Figure 11.1 shows the path of a moving particle in the xy-plane. Notice that the path fails 
the vertical line test, so it cannot be described as the graph of a function of the variable x.
However, we can sometimes describe the path by a pair of equations, x = ƒ(t) and 
y = g(t), where ƒ and g are continuous functions. When studying motion, t usually 
denotes time. Equations like these describe more general curves than those described by a 
single function, and they provide not only the graph of the path traced out but also the 
location of the particle (x, y) = (ƒ(t), g(t)) at any time t.

Parametric Equations 
and Polar Coordinates

11

DEFINITION If x and y are given as functions

x = ƒ(t), y = g(t)

over an interval I of t-values, then the set of points (x, y) = (ƒ(t), g(t)) defined by 
these equations is a parametric curve. The equations are parametric equations
for the curve.

The variable t is a parameter for the curve, and its domain I is the parameter interval.
If I is a closed interval, a … t … b, the point (ƒ(a), g(a)) is the initial point of the curve and 
(ƒ(b), g(b)) is the terminal point. When we give parametric equations and a parameter 

( f (t), g(t))

Position of particle
at time t

FIGURE 11.1 The curve or path traced
by a particle moving in the xy-plane is not 
always the graph of a function or single 
equation.
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interval for a curve, we say that we have parametrized the curve. The equations and interval 
together constitute a parametrization of the curve. A given curve can be represented by dif-
ferent sets of parametric equations. (See Exercises 19 and 20.)

EXAMPLE 2  Identify geometrically the curve in Example 1 (Figure 11.2) by elimi-
nating the parameter t and obtaining an algebraic equation in x and y.

Solution We solve the equation y = t + 1 for the parameter t and substitute the result 
into the parametric equation for x. This procedure gives t = y - 1 and

x = t2 = ( y - 1)2 = y2 - 2y + 1.

The equation x = y2 - 2y + 1 represents a parabola, as displayed in Figure 11.2. It is 
sometimes quite difficult, or even impossible, to eliminate the parameter from a pair of 
parametric equations, as we did here.

EXAMPLE 3  Graph the parametric curves

(a) x = cos t, y = sin t, 0 … t … 2p.

(b) x = a cos t, y = a sin t, 0 … t … 2p.

Solution

(a) Since x2 + y2 = cos2 t + sin2 t = 1, the parametric curve lies along the unit circle 
x2 + y2 = 1. As t increases from 0 to 2p, the point (x, y) = (cos t, sin t) starts at 
(1, 0) and traces the entire circle once counterclockwise (Figure 11.3).

EXAMPLE 1  Sketch the curve defined by the parametric equations

x = t2, y = t + 1, -q 6 t 6 q.

Solution We make a brief table of values (Table 11.1), plot the points (x, y), and draw a 
smooth curve through them (Figure 11.2). Each value of t gives a point (x, y) on the curve, 
such as t = 1 giving the point (1, 2) recorded in Table 11.1. If we think of the curve as the 
path of a moving particle, then the particle moves along the curve in the direction of the 
arrows shown in Figure 11.2. Although the time intervals in the table are equal, the con-
secutive points plotted along the curve are not at equal arc length distances. The reason for 
this is that the particle slows down as it gets nearer to the y-axis along the lower branch of 
the curve as t increases, and then speeds up after reaching the y-axis at (0, 1) and moving 
along the upper branch. Since the interval of values for t is all real numbers, there is no 
initial point and no terminal point for the curve.

(1, 2)
(4, 3)

(4, −1)

(9, 4)

(9, −2)

(0, 1)
(1, 0)

x

y

t = 0

t = −1

t = 1
t = 2

t = 3

t = −2

t = −3

FIGURE 11.2 The curve given by the 
parametric equations x = t2 and y = t + 1
(Example 1).

TABLE 11.1 Values of 

x = t2 and y = t + 1 for 

selected values of t.

t x y

-3 9 -2

-2 4 -1

-1 1 0

0 0 1

1 1 2

2 4 3

3 9 4

x
0

t

(1, 0)

y

x2 + y2 = 1

P(cos t, sin t)

t = 0t = p

t = 3p
2

t = p
2

Figure 11.3 The equations x = cos t
and y = sin t describe motion on the circle 
x2 + y2 = 1. The arrow shows the direc-
tion of increasing t (Example 3).
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(b) For x = a cos t, y = a sin t, 0 … t … 2p, we have x2 + y2 = a2 cos2 t + a2 sin2 t = a2.
The parametrization describes a motion that begins at the point (a, 0) and traverses 
the circle x2 + y2 = a2 once counterclockwise, returning to (a, 0) at t = 2p. The 
graph is a circle centered at the origin with radius r = 0 a 0  and coordinate points 
(a cos t, a sin t).

x

y

0

y = x2

(−2, 4) (2, 4)

(1, 1)

t = −2 t = 2

t = 1

P(t, t 2)

FIGURE 11.5 The path defined by 
x = t, y = t2, -q 6 t 6 q is the entire 
parabola y = x2 (Example 5).

EXAMPLE 4  The position P(x, y) of a particle moving in the xy-plane is given by the 
equations and parameter interval

x = 2t, y = t, t Ú 0.

Identify the path traced by the particle and describe the motion.

Solution We try to identify the path by eliminating t between the equations x = 2t
and y = t, which might produce a recognizable algebraic relation between x and y. We 
find that

y = t = 12t22 = x2.

Thus, the particle’s position coordinates satisfy the equation y = x2, so the particle moves 
along the parabola y = x2.

It would be a mistake, however, to conclude that the particle’s path is the entire para-
bola y = x2; it is only half the parabola. The particle’s x-coordinate is never negative. The 
particle starts at (0, 0) when t = 0 and rises into the first quadrant as t increases (Figure 
11.4). The parameter interval is 30, q) and there is no terminal point.

The graph of any function y = ƒ(x) can always be given a natural parametrization
x = t and y = ƒ(t). The domain of the parameter in this case is the same as the domain of 
the function ƒ.

EXAMPLE 5  A parametrization of the graph of the function ƒ(x) = x2 is given by

x = t, y = ƒ(t) = t2, -q 6 t 6 q.

When t Ú 0, this parametrization gives the same path in the xy-plane as we had in Exam-
ple 4. However, since the parameter t here can now also be negative, we obtain the left-
hand part of the parabola as well; that is, we have the entire parabolic curve. For this 
parametrization, there is no starting point and no terminal point (Figure 11.5).

Notice that a parametrization also specifies when (the value of the parameter) a parti-
cle moving along the curve is located at a specific point along the curve. In Example 4, the 
point (2, 4) is reached when t = 4; in Example 5, it is reached “earlier” when t = 2. You 
can see the implications of this aspect of parametrizations when considering the possibil-
ity of two objects coming into collision: they have to be at the exact same location point 
P(x, y) for some (possibly different) values of their respective parameters. We will say 
more about this aspect of parametrizations when we study motion in Chapter 13.

EXAMPLE 6  Find a parametrization for the line through the point (a, b) having slope m.

Solution A Cartesian equation of the line is y - b = m(x - a). If we set the parameter 
t = x - a, we find that x = a + t and y - b = mt. That is,

x = a + t, y = b + mt, -q 6 t 6 q

parametrizes the line. This parametrization differs from the one we would obtain by the 
natural parametrization in Example 5 when t = x. However, both parametrizations describe 
the same line.

x

y

0

(1, 1)

(2, 4)

Starts at
t = 0

t = 1

t = 4

y = x2, x ≥ 0

P(
"

t, t)

FIGURE 11.4 The equations x = 2t
and y = t and the interval t Ú 0 de-
scribe the path of a particle that traces the 
right-hand half of the parabola y = x2

(Example 4).
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EXAMPLE 7  Sketch and identify the path traced by the point P(x, y) if

x = t + 1
t , y = t - 1

t , t 7 0.

Solution We make a brief table of values in Table 11.2, plot the points, and draw a 
smooth curve through them, as we did in Example 1. Next we eliminate the parameter t
from the equations. The procedure is more complicated than in Example 2. Taking the dif-
ference between x and y as given by the parametric equations, we find that

x - y = at + 1
t b - at - 1

t b = 2
t .

If we add the two parametric equations, we get

x + y = at + 1
t b + at - 1

t b = 2t.

We can then eliminate the parameter t by multiplying these last equations together:

(x - y)(x + y) = a2t b (2t) = 4,

or, expanding the expression on the left-hand side, we obtain a standard equation for a 
hyperbola (reviewed in Section 11.6):

x2 - y2 = 4. (1)

Thus the coordinates of all the points P(x, y) described by the parametric equations satisfy 
Equation (1). However, Equation (1) does not require that the x-coordinate be positive. So 
there are points (x, y) on the hyperbola that do not satisfy the parametric equation 
x = t + (1>t), t 7 0, for which x is always positive. That is, the parametric equations do 
not yield any points on the left branch of the hyperbola given by Equation (1), points 
where the x-coordinate would be negative. For small positive values of t, the path lies in 
the fourth quadrant and rises into the first quadrant as t increases, crossing the x-axis when 
t = 1 (see Figure 11.6). The parameter domain is (0, q) and there is no starting point and 
no terminal point for the path.

Examples 4, 5, and 6 illustrate that a given curve, or portion of it, can be represented 
by different parametrizations. In the case of Example 7, we can also represent the right-
hand branch of the hyperbola by the parametrization

x = 24 + t2, y = t, -q 6 t 6 q,

which is obtained by solving Equation (1) for x Ú 0 and letting y be the parameter. Still 
another parametrization for the right-hand branch of the hyperbola given by Equation (1) is

x = 2 sec t, y = 2 tan t, -p
2

6 t 6 p
2

.

This parametrization follows from the trigonometric identity sec2 t - tan2 t = 1, so

x2 - y2 = 4 sec2 t - 4 tan2 t = 4(sec2 t - tan2 t) = 4.

As t runs between -p>2 and p>2, x = sec t remains positive and y = tan t runs between 
-q and q, so P traverses the hyperbola’s right-hand branch. It comes in along the 
branch’s lower half as t S 0-, reaches (2, 0) at t = 0, and moves out into the first quad-
rant as t increases steadily toward p>2. This is the same hyperbola branch for which a 
portion is shown in Figure 11.6.
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FIGURE 11.6 The curve for 
x = t + (1>t), y = t - (1>t), t 7 0
in Example 7. (The part shown is for 
0.1 … t … 10.)

TABLE 11.2 Values of 

x = t + (1>t ) and y = t - (1>t )
for selected values of t.

t 1 , t x y

0.1 10.0 10.1 -9.9

0.2 5.0 5.2 -4.8

0.4 2.5 2.9 -2.1

1.0 1.0 2.0 0.0

2.0 0.5 2.5 1.5

5.0 0.2 5.2 4.8

10.0 0.1 10.1 9.9

HISTORICAL BIOGRAPHY

Christian Huygens
(1629–1695)
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Cycloids

The problem with a pendulum clock whose bob swings in a circular arc is that the fre-
quency of the swing depends on the amplitude of the swing. The wider the swing, the 
longer it takes the bob to return to center (its lowest position).

This does not happen if the bob can be made to swing in a cycloid. In 1673, Christian 
Huygens designed a pendulum clock whose bob would swing in a cycloid, a curve we 
define in Example 8. He hung the bob from a fine wire constrained by guards that caused 
it to draw up as it swung away from center (Figure 11.7), and we describe the path para-
metrically in the next example.

EXAMPLE 8  A wheel of radius a rolls along a horizontal straight line. Find paramet-
ric equations for the path traced by a point P on the wheel’s circumference. The path is 
called a cycloid.

Solution We take the line to be the x-axis, mark a point P on the wheel, start the wheel 
with P at the origin, and roll the wheel to the right. As parameter, we use the angle t
through which the wheel turns, measured in radians. Figure 11.8 shows the wheel a short 
while later when its base lies at units from the origin. The wheel’s center C lies at (at, a)
and the coordinates of P are

x = at + a cos u, y = a + a sin u.

To express u in terms of t, we observe that t + u = 3p>2 in the figure, so that

u = 3p
2

- t.

This makes

cos u = cos a3p
2

- tb = -sin t, sin u = sin a3p
2

- tb = -cos t.

The equations we seek are

x = at - a sin t, y = a - a cos t.

These are usually written with the a factored out:

x = a(t - sin t), y = a(1 - cos t). (2)

Figure 11.9 shows the first arch of the cycloid and part of the next.

Brachistochrones and Tautochrones

If we turn Figure 11.9 upside down, Equations (2) still apply and the resulting curve (Fig-
ure 11.10) has two interesting physical properties. The first relates to the origin O and the 
point B at the bottom of the first arch. Among all smooth curves joining these points, the 
cycloid is the curve along which a frictionless bead, subject only to the force of gravity, 
will slide from O to B the fastest. This makes the cycloid a brachistochrone (“brah-kiss-
toe-krone”), or shortest-time curve for these points. The second property is that even if 
you start the bead partway down the curve toward B, it will still take the bead the same 
amount of time to reach B. This makes the cycloid a tautochrone (“taw-toe-krone”), or 
same-time curve for O and B.

Cycloid

Guard
cycloid

Guard
cycloid

FIGURE 11.7 In Huygens’ pendulum 
clock, the bob swings in a cycloid, so the 
frequency is independent of the amplitude.
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a
u

C(at, a)

M0 at

P(x, y) = (at + a cos u, a + a sin u)

FIGURE 11.8 The position of P(x, y) on 
the rolling wheel at angle t (Example 8).
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FIGURE 11.9 The cycloid curve 
x = a(t - sin t), y = a(1 - cos t), for 
t Ú 0.
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P(at − a sin t, a − a cos t)

B(ap, 2a)

FIGURE 11.10 Turning Figure 11.9 
upside down, the y-axis points downward, 
indicating the direction of the gravitational 
force. Equations (2) still describe the curve 
parametrically.



658 Chapter 11: Parametric Equations and Polar Coordinates

Are there any other brachistochrones joining O and B, or is the cycloid the only one? 
We can formulate this as a mathematical question in the following way. At the start, the 
kinetic energy of the bead is zero, since its velocity (speed) is zero. The work done by 
gravity in moving the bead from (0, 0) to any other point (x, y) in the plane is mgy, and 
this must equal the change in kinetic energy. (See Exercise 23 in Section 6.5.) That is,

mgy = 1
2

my2 - 1
2

m(0)2.

Thus, the speed of the bead when it reaches (x, y) has to be

y = 22gy.

That is,

ds
dT

= 22gy
ds is the arc length differ-
ential along the bead’s path 
and T represents time.

or

dT = ds

22gy
=
21 + (dy>dx)2 dx

22gy
. (3)

The time Tƒ it takes the bead to slide along a particular path y = ƒ(x) from O to B(ap, 2a) is

Tf =
L

x=ap

x=0 B
1 + (dy>dx)2

2gy
dx. (4)

What curves y = ƒ(x), if any, minimize the value of this integral?
At first sight, we might guess that the straight line joining O and B would give the 

shortest time, but perhaps not. There might be some advantage in having the bead fall ver-
tically at first to build up its speed faster. With a higher speed, the bead could travel a lon-
ger path and still reach B first. Indeed, this is the right idea. The solution, from a branch of 
mathematics known as the calculus of variations, is that the original cycloid from O to B is 
the one and only brachistochrone for O and B (Figure 11.11).

In the next section we show how to find the arc length differential ds for a parame-
trized curve. Once we know how to find ds, we can calculate the time given by the right-
hand side of Equation (4) for the cycloid. This calculation gives the amount of time it takes 
a frictionless bead to slide down the cycloid to B after it is released from rest at O. The 
time turns out to be equal to p2a>g, where a is the radius of the wheel defining the par-
ticular cycloid. Moreover, if we start the bead at some lower point on the cycloid, corre-
sponding to a parameter value t0 7 0, we can integrate the parametric form of ds>22gy
in Equation (3) over the interval 3 t0, p4  to find the time it takes the bead to reach the point 
B. That calculation results in the same time T = p2a>g. It takes the bead the same 
amount of time to reach B no matter where it starts, which makes the cycloid a tauto-
chrone. Beads starting simultaneously from O, A, and C in Figure 11.12, for instance, will 
all reach B at exactly the same time. This is the reason why Huygens’ pendulum clock in 
Figure 11.7 is independent of the amplitude of the swing.

cycloid

O

B

FIGURE 11.11 The cycloid is the 
unique curve which minimizes the time it 
takes for a frictionless bead to slide from 
point O to B.

O
x

y

A

B
C

FIGURE 11.12 Beads released simulta-
neously on the upside-down cycloid at O,
A, and C will reach B at the same time.
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Finding Cartesian from Parametric Equations
Exercises 1–18 give parametric equations and parameter intervals for 
the motion of a particle in the xy-plane. Identify the particle’s path by 
finding a Cartesian equation for it. Graph the Cartesian equation. (The 
graphs will vary with the equation used.) Indicate the portion of the 
graph traced by the particle and the direction of motion.

1. x = 3t, y = 9t2, -q 6 t 6 q
2. x = -2t, y = t, t Ú 0

3. x = 2t - 5, y = 4t - 7, -q 6 t 6 q
4. x = 3 - 3t, y = 2t, 0 … t … 1

5. x = cos 2t, y = sin 2t, 0 … t … p
6. x = cos (p - t), y = sin (p - t), 0 … t … p
7. x = 4 cos t, y = 2 sin t, 0 … t … 2p

8. x = 4 sin t, y = 5 cos t, 0 … t … 2p

9. x = sin t, y = cos 2t, - p
2

… t … p
2

10. x = 1 + sin t, y = cos t - 2, 0 … t … p
11. x = t2, y = t6 - 2t4, -q 6 t 6 q

12. x = t
t - 1

, y = t - 2
t + 1

, -1 6 t 6 1

13. x = t, y = 21 - t2, -1 … t … 0

14. x = 2t + 1, y = 2t, t Ú 0

15. x = sec2 t - 1, y = tan t, -p>2 6 t 6 p>2
16. x = -sec t, y = tan t, -p>2 6 t 6 p>2
17. x = -cosh t, y = sinh t, -q 6 t 6 q
18. x = 2 sinh t, y = 2 cosh t, -q 6 t 6 q

Finding Parametric Equations
19. Find parametric equations and a parameter interval for the motion 

of a particle that starts at (a, 0) and traces the circle x2 + y2 = a2

  a. once clockwise.

  b. once counterclockwise.

  c. twice clockwise.

  d. twice counterclockwise.

  (There are many ways to do these, so your answers may not be 
the same as the ones in the back of the book.)

20. Find parametric equations and a parameter interval for the motion 
of a particle that starts at (a, 0) and traces the ellipse 
(x2>a2) + (y2>b2) = 1

  a. once clockwise. b. once counterclockwise.

  c. twice clockwise. d. twice counterclockwise.

  (As in Exercise 19, there are many correct answers.)

In Exercises 21–26, find a parametrization for the curve.

21. the line segment with endpoints (-1, -3) and (4, 1)

22. the line segment with endpoints (-1, 3) and (3, -2)

23. the lower half of the parabola x - 1 = y2

24. the left half of the parabola y = x2 + 2x

25. the ray (half line) with initial point (2, 3) that passes through the 
point (-1, -1)

26. the ray (half line) with initial point (-1, 2) that passes through the 
point (0, 0)

27. Find parametric equations and a parameter interval for the motion 
of a particle starting at the point (2, 0) and tracing the top half of 
the circle x2 + y2 = 4 four times.

28. Find parametric equations and a parameter interval for the motion 
of a particle that moves along the graph of y = x2 in the follow-
ing way: Beginning at (0, 0) it moves to (3, 9), and then travels 
back and forth from (3, 9) to (-3, 9) infinitely many times.

29. Find parametric equations for the semicircle

x2 + y2 = a2, y 7 0,

  using as parameter the slope t = dy>dx of the tangent to the 
curve at (x, y).

30. Find parametric equations for the circle

x2 + y2 = a2,

  using as parameter the arc length s measured counterclockwise 
from the point (a, 0) to the point (x, y).

31. Find a parametrization for the line segment joining points (0, 2)
and (4, 0) using the angle u in the accompanying figure as the 
parameter.

x

y

2

0 4

u

(x, y)

32. Find a parametrization for the curve y = 2x with terminal point 
(0, 0) using the angle u in the accompanying figure as the parameter.

x

y

u

(x, y)

y =
"

x

0

33. Find a parametrization for the circle (x - 2)2 + y2 = 1 starting 
at (1, 0) and moving clockwise once around the circle, using the 
central angle u in the accompanying figure as the parameter.

x

y

1

1

1 2 30

u

(x, y)

Exercises 11.1



34. Find a parametrization for the circle x2 + y2 = 1 starting at (1, 0)
and moving counterclockwise to the terminal point (0, 1), using 
the angle u in the accompanying figure as the parameter.

x

y

1

–2
u

(x, y)

(1, 0)

(0, 1)

35. The witch of Maria Agnesi The bell-shaped witch of Maria 
Agnesi can be constructed in the following way. Start with a cir-
cle of radius 1, centered at the point (0, 1), as shown in the 
accompanying figure. Choose a point A on the line y = 2 and 
connect it to the origin with a line segment. Call the point where 
the segment crosses the circle B. Let P be the point where the 
vertical line through A crosses the horizontal line through B. The 
witch is the curve traced by P as A moves along the line y = 2.
Find parametric equations and a parameter interval for the witch 
by expressing the coordinates of P in terms of t, the radian mea-
sure of the angle that segment O-A makes with the positive x-axis.
The following equalities (which you may assume) will help.

  a. x = AQ b. y = 2 - AB sin t

c. AB # OA = (AQ)2

x

y

O

Q A

B P(x, y)(0, 1)

y = 2

t

36. Hypocycloid When a circle rolls on the inside of a fixed circle, 
any point P on the circumference of the rolling circle describes a 
hypocycloid. Let the fixed circle be x2 + y2 = a2, let the radius 
of the rolling circle be b, and let the initial position of the tracing 
point P be A(a, 0). Find parametric equations for the hypocy-
cloid, using as the parameter the angle u from the positive x-axis
to the line joining the circles’ centers. In particular, if b = a>4,
as in the accompanying figure, show that the hypocycloid is the 
astroid

x = a cos3 u, y = a sin3 u.

x

y

O P

C
A(a, 0)b

u

37. As the point N moves along the line y = a in the accompanying 
figure, P moves in such a way that OP = MN. Find parametric 
equations for the coordinates of P as functions of the angle t that 
the line ON makes with the positive y-axis.

x

y

N

M

A(0, a)

t

P

O

38. Trochoids A wheel of radius a rolls along a horizontal straight 
line without slipping. Find parametric equations for the curve traced 
out by a point P on a spoke of the wheel b units from its center. As 
parameter, use the angle u through which the wheel turns. The 
curve is called a trochoid, which is a cycloid when b = a.

Distance Using Parametric Equations
39. Find the point on the parabola x = t, y = t2, -q 6 t 6 q,

closest to the point (2, 1>2). (Hint: Minimize the square of the 
distance as a function of t.)

40. Find the point on the ellipse x = 2 cos t, y = sin t, 0 … t … 2p
closest to the point (3>4, 0). (Hint: Minimize the square of the 
distance as a function of t.)

GRAPHER EXPLORATIONS
If you have a parametric equation grapher, graph the equations over 
the given intervals in Exercises 41–48.

41. Ellipse x = 4 cos t, y = 2 sin t, over

  a. 0 … t … 2p

b. 0 … t … p
  c. -p>2 … t … p>2.

42. Hyperbola branch x = sec t (enter as 1 >cos (t)), y = tan t
(enter as sin (t) >cos (t)), over

  a. -1.5 … t … 1.5

b. -0.5 … t … 0.5

c. -0.1 … t … 0.1.

43. Parabola x = 2t + 3, y = t2 - 1, -2 … t … 2

44. Cycloid x = t - sin t, y = 1 - cos t, over

  a. 0 … t … 2p

b. 0 … t … 4p

  c. p … t … 3p.

45. Deltoid

x = 2 cos t + cos 2t, y = 2 sin t - sin 2t; 0 … t … 2p

  What happens if you replace 2 with -2 in the equations for x and 
y? Graph the new equations and find out.

46. A nice curve

x = 3 cos t + cos 3t, y = 3 sin t - sin 3t; 0 … t … 2p

  What happens if you replace 3 with -3 in the equations for x and 
y? Graph the new equations and find out.

T
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47. a. Epicycloid

x = 9 cos t - cos 9t, y = 9 sin t - sin 9t; 0 … t … 2p

  b. Hypocycloid

   x = 8 cos t + 2 cos 4t, y = 8 sin t - 2 sin 4t; 0 … t … 2p

  c. Hypotrochoid

   x = cos t + 5 cos 3t, y = 6 cos t - 5 sin 3t; 0 … t … 2p

48. a. x = 6 cos t + 5 cos 3t, y = 6 sin t - 5 sin 3t;
   0 … t … 2p

  b. x = 6 cos 2t + 5 cos 6t, y = 6 sin 2t - 5 sin 6t;
0 … t … p

  c. x = 6 cos t + 5 cos 3t, y = 6 sin 2t - 5 sin 3t;
0 … t … 2p

  d. x = 6 cos 2t + 5 cos 6t, y = 6 sin 4t - 5 sin 6t;
0 … t … p

11.2 Calculus with Parametric Curves

In this section we apply calculus to parametric curves. Specifically, we find slopes, lengths, 
and areas associated with parametrized curves.

Tangents and Areas

A parametrized curve x = ƒ(t) and y = g(t) is differentiable at t if ƒ and g are differen-
tiable at t. At a point on a differentiable parametrized curve where y is also a differentiable 
function of x, the derivatives dy>dt, dx>dt, and dy>dx are related by the Chain Rule:

dy
dt

=
dy
dx
# dx

dt
.

If dx>dt ≠ 0, we may divide both sides of this equation by dx>dt to solve for dy>dx.

Parametric Formula for dy ,dx

If all three derivatives exist and dx>dt ≠ 0,

dy
dx

=
dy>dt

dx>dt
. (1)

If parametric equations define y as a twice-differentiable function of x, we can apply 
Equation (1) to the function dy>dx = y′ to calculate d2y>dx2 as a function of t:

d2y

dx2 = d
dx

( y′) =
dy′>dt

dx>dt
. Eq. (1) with y′ in place of y

Parametric Formula for d2y ,dx2

If the equations x = ƒ(t), y = g(t) define y as a twice-differentiable func-
tion of x, then at any point where dx>dt ≠ 0 and y′ = dy>dx,

d2y

dx2 =
dy′>dt

dx>dt
. (2)

EXAMPLE 1  Find the tangent to the curve

x = sec t, y = tan t, -p
2

6 t 6 p
2

,

at the point 122, 12, where t = p>4 (Figure 11.13).

FIGURE 11.13 The curve in Example 1 
is the right-hand branch of the hyperbola 
x2 - y2 = 1.

x

y

0 1 2

1

2

(
"

2, 1)
t = p

4

x = sec t, y = tan t,
p
2

p
2

– < t <
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Solution The slope of the curve at t is

dy
dx

=
dy>dt

dx>dt
= sec2 t

sec t tan t = sec t
tan t . Eq. (1)

Setting t equal to p>4 gives

dy
dx

2
t=p>4

=
sec (p>4)

tan (p>4)

= 22
1

= 22.

The tangent line is

y - 1 = 22 1x - 222
y = 22 x - 2 + 1

y = 22 x - 1.

Finding d2y ,dx2 in Terms of t

1. Express y′ = dy>dx in terms of t.

2. Find dy′>dt.

3. Divide dy′>dt by dx>dt.

EXAMPLE 2  Find d2y>dx2 as a function of t if x = t - t2 and y = t - t3.

Solution

1. Express y′ = dy>dx in terms of t.

y′ =
dy
dx

=
dy>dt

dx>dt
= 1 - 3t2

1 - 2t

2. Differentiate y′ with respect to t.

dy′
dt

= d
dt
a1 - 3t2

1 - 2t
b = 2 - 6t + 6t2

(1 - 2t)2 Derivative Quotient Rule

3. Divide dy′>dt by dx>dt.

d2y

dx2 =
dy′>dt

dx>dt
=

(2 - 6t + 6t2) >(1 - 2t)2

1 - 2t
= 2 - 6t + 6t2

(1 - 2t)3 Eq. (2)

EXAMPLE 3  Find the area enclosed by the astroid (Figure 11.14)

x = cos3 t, y = sin3 t, 0 … t … 2p.

Solution By symmetry, the enclosed area is 4 times the area beneath the curve in the 
first quadrant where 0 … t … p>2. We can apply the definite integral formula for area 
studied in Chapter 5, using substitution to express the curve and differential dx in terms of 
the parameter t. So,FIGURE 11.14 The astroid in Example 3.

x

y

0

1

1−1

−1

x = cos3 t
y = sin3 t
0 ≤ t ≤ 2p
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A = 4 
L

1

0
y dx

= 4 
L

p>2

0
 sin3t # 3 cos2 t sin t dt Substitution for y and dx

= 12 
L

p>2

0
a1 - cos 2t

2
b2 a1 + cos 2t

2
b dt sin4 t = a1 - cos 2t

2
b 2

= 3
2 L

p>2

0
 (1 - 2 cos 2t + cos2 2t)(1 + cos 2t) dt Expand squared term.

= 3
2 L

p>2

0

(1 - cos 2t - cos2 2t + cos3 2t) dt Multiply terms.

= 3
2
c
L

p>2

0
(1 - cos 2t) dt -

L

p>2

0
 cos2 2t dt +

L

p>2

0
 cos3 2t dt d

= 3
2
c at - 1

2
 sin 2tb - 1

2
at + 1

4
 sin 2tb + 1

2
asin 2t - 1

3 sin3 2tb d p>2
0

Section 8.3, 
Example 3

= 3
2
cap

2
- 0 - 0 - 0b - 1

2
ap

2
+ 0 - 0 - 0b + 1

2
(0 - 0 - 0 + 0)d Evaluate.

= 3p
8 .

Length of a Parametrically Defined Curve

Let C be a curve given parametrically by the equations

x = ƒ(t) and y = g(t), a … t … b.

We assume the functions ƒ and g are continuously differentiable (meaning they 
have continuous first derivatives) on the interval 3a, b4 . We also assume that the 
derivatives ƒ′(t) and g′(t) are not simultaneously zero, which prevents the curve C  
from having any corners or cusps. Such a curve is called a smooth curve. We 
subdivide the path (or arc) AB into n pieces at points A = P0, P1, P2,c, Pn = B  
(Figure 11.15). These points correspond to a partition of the interval 3a, b4  by 
a = t0 6 t1 6 t2 6 g 6 tn = b,  where Pk = (ƒ(tk), g(tk)). Join successive points 
of this subdivision by straight-line segments (Figure 11.15). A representative line 
segment has length

Lk = 2(∆xk)2 + (∆yk)2

= 23ƒ(tk) - ƒ(tk-1)4 2 + 3g(tk) - g(tk-1)4 2

(see Figure 11.16). If ∆tk is small, the length Lk is approximately the length of arc Pk-1Pk.
By the Mean Value Theorem there are numbers tk* and tk** in 3 tk-1, tk4  such that

∆xk = ƒ(tk) - ƒ(tk-1) = ƒ′(tk*) ∆tk ,

∆yk = g(tk) - g(tk-1) = g′(tk**) ∆tk .

y

x
0

A = P0

B = Pn

P1

P2

C

Pk

Pk−1

FIGURE 11.15 The length of the smooth 
curve C from A to B is approximated by the 
sum of the lengths of the polygonal path 
(straight-line segments) starting at A = P0,
then to P1, and so on, ending at B = Pn.

FIGURE 11.16 The arc Pk-1Pk is
approximated by the straight-line
segment shown here, which has length 
Lk = 2(∆xk)2 + (∆yk)2.

y

x
0

Lk

Δxk

Δyk

Pk–1 = ( f (tk–1), g(tk–1))

Pk = ( f (tk), g(tk))



664 Chapter 11: Parametric Equations and Polar Coordinates

Assuming the path from A to B is traversed exactly once as t increases from t = a to 
t = b, with no doubling back or retracing, an approximation to the (yet to be defined) 
“length” of the curve AB is the sum of all the lengths Lk:

a

n

k=1
Lk = a

n

k=1
2(∆xk)2 + (∆yk)2

= a

n

k=1
23ƒ′(tk*) 4 2 + 3g′(tk**) 4 2 ∆tk .

Although this last sum on the right is not exactly a Riemann sum (because ƒ′ and g′ are 
evaluated at different points), it can be shown that its limit, as the norm of the partition 
tends to zero and the number of segments n S q, is the definite integral

lim
� �P� �S0 a

n

k=1
23ƒ′(tk *) 4 2 + 3g′(tk **) 4 2 ∆tk =

L

b

a
23ƒ′(t)4 2 + 3g′(t)4 2 dt.

Therefore, it is reasonable to define the length of the curve from A to B as this integral.

DEFINITION If a curve C is defined parametrically by x = ƒ(t) and y = g(t),
a … t … b, where ƒ′ and g′ are continuous and not simultaneously zero on 3a, b4 , and C is traversed exactly once as t increases from t = a to t = b, then 
the length of C is the definite integral

L =
L

b

a
23ƒ′(t)4 2 + 3g′(t)4 2 dt.

A smooth curve C does not double back or reverse the direction of motion over the time 
interval 3a, b4  since (ƒ′)2 + (g′)2 7 0 throughout the interval. At a point where a curve 
does start to double back on itself, either the curve fails to be differentiable or both deriva-
tives must simultaneously equal zero. We will examine this phenomenon in Chapter 13, 
where we study tangent vectors to curves.

If x = ƒ(t) and y = g(t), then using the Leibniz notation we have the following result 
for arc length:

L =
L

b

a B a
dx
dt
b2

+ ady
dt
b2

dt. (3)

If there are two different parametrizations for a curve C whose length we want to find, 
it does not matter which one we use. However, the parametrization we choose must meet 
the conditions stated in the definition of the length of C (see Exercise 41 for an example).

EXAMPLE 4  Using the definition, find the length of the circle of radius r defined 
parametrically by

x = r cos t and y = r sin t, 0 … t … 2p.

Solution As t varies from 0 to 2p, the circle is traversed exactly once, so the circumfer-
ence is

L =
L

2p

0 B a
dx
dt
b2

+ ady
dt
b2

dt.
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We find

dx
dt

= -r sin t,
dy
dt

= r cos t

and

adx
dt
b2

+ ady
dt
b2

= r2(sin2 t + cos2 t) = r2.

So

L =
L

2p

0
2r2 dt = r 3 t42p

0 = 2pr.

EXAMPLE 5  Find the length of the astroid (Figure 11.14)

x = cos3 t, y = sin3 t, 0 … t … 2p.

Solution Because of the curve’s symmetry with respect to the coordinate axes, its length 
is four times the length of the first-quadrant portion. We have

x = cos3 t, y = sin3 t

adx
dt
b2

= 33 cos2 t(-sin t)4 2 = 9 cos4 t sin2 t

ady
dt
b2

= 33 sin2 t(cos t)4 2 = 9 sin4 t cos2 t

B a
dx
dt
b2

+ ady
dt
b2

= 29 cos2 t sin2 t (cos2 t + sin2 t)
(++)++*

1

= 29 cos2 t sin2 t

= 3 � cos t sin t � cos t sin t Ú 0 for 
0 … t … p>2

= 3 cos t sin t.

Therefore,

Length of first@quadrant portion =
L

p>2

0
3 cos t sin t dt

= 3
2L

p>2

0
sin 2t dt

cos t sin t =
(1>2) sin 2t

= - 3
4

cos 2t d
0

p>2
= 3

2
.

The length of the astroid is four times this: 4(3>2) = 6.

EXAMPLE 6  Find the perimeter of the ellipse 
x2

a2 +
y2

b2 = 1.

Solution Parametrically, we represent the ellipse by the equations x = a sin t and 
y = b cos t, a 7 b and 0 … t … 2p. Then,
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adx
dt
b2

+ ady
dt
b2

= a2 cos2 t + b2 sin2 t

= a2 - (a2 - b2) sin2 t

= a231 - e2 sin2 t4      e = 1 - b2

a2
, not the 

number 2.71828 . . .

From Equation (3), the perimeter is given by

P = 4a
L

p>2

0
21 - e2 sin2 t dt.

(We investigate the meaning of e in Section 11.7.) The integral for P is nonelementary and 
known as the complete elliptic integral of the second kind. We can compute its value to 
within any degree of accuracy using infinite series in the following way. From the bino-
mial expansion for 21 - x in Section 10.10, we have

21 - e2 sin2 t = 1 - 1
2

e2 sin2 t - 1
2 # 4 e4 sin4 t - g, 0 e sin t 0 … e 6 1

Then to each term in this last expression we apply the integral Formula 157 (at the back of 
the book) for 1

p>2
0 sinn t dt when n is even, giving the perimeter

P = 4a
L

p>2

0

21 - e2 sin2 t dt

= 4a cp
2

- a1
2

e2b a1
2
# p

2
b - a 1

2 # 4 e4b a1 # 3
2 # 4 #

p
2
b - a 1 # 3

2 # 4 # 6 e6b a1 # 3 # 5
2 # 4 # 6 #

p
2
b - gd

= 2pa c 1 - a1
2
b2

e2 - a1 # 3
2 # 4b

2 e4

3 - a1 # 3 # 5
2 # 4 # 6b

2 e6

5
- gd .

Since e 6 1, the series on the right-hand side converges by comparison with the geomet-
ric series g

q
n=1 (e2)n.

Length of a Curve y = ƒ(x )

The length formula in Section 6.3 is a special case of Equation (3). Given a continuously 
differentiable function y = ƒ(x), a … x … b, we can assign x = t as a parameter. The 
graph of the function ƒ is then the curve C defined parametrically by

x = t and y = ƒ(t), a … t … b,

a special case of what we considered before. Then,

dx
dt

= 1 and
dy
dt

= ƒ′(t).

From Equation (1), we have

dy
dx

=
dy>dt

dx>dt
= ƒ′(t),

giving

adx
dt
b2

+ ady
dt
b2

= 1 + 3ƒ′(t)4 2

= 1 + 3ƒ′(x)4 2. t = x

HISTORICAL BIOGRAPHY

Gregory St. Vincent
(1584–1667)
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Substitution into Equation (3) gives the arc length formula for the graph of y = ƒ(x), in 
agreement with Equation (3) in Section 6.3.

The Arc Length Differential

Consistent with our discussion in Section 6.3, we can define the arc length function for a 
parametrically defined curve x = ƒ(t) and y = g(t), a … t … b, by

s(t) =
L

t

a
23ƒ′(z)4 2 + 3g′(z)4 2 dz.

Then, by the Fundamental Theorem of Calculus,

ds
dt

= 33ƒ′(t)4 2 + 3g′(t)4 2 = B a
dx
dt
b2

+ ady
dt
b2

.

The differential of arc length is

ds = B a
dx
dt
b2

+ ady
dt
b2

dt. (4)

Equation (4) is often abbreviated to

ds = 2dx2 + dy2.

Just as in Section 6.3, we can integrate the differential ds between appropriate limits to 
find the total length of a curve.

Here’s an example where we use the arc length formula to find the centroid of an arc.

EXAMPLE 7  Find the centroid of the first-quadrant arc of the astroid in Example 5.

Solution We take the curve’s density to be d = 1 and calculate the curve’s mass and 
moments about the coordinate axes as we did in Section 6.6.

The distribution of mass is symmetric about the line y = x, so x = y. A typical seg-
ment of the curve (Figure 11.17) has mass

dm = 1 # ds = B a
dx
dt
b2

+ ady
dt
b2

dt = 3 cos t sin t dt.
From
Example 5

The curve’s mass is

M =
L

p>2

0
dm =

L

p>2

0
3 cos t sin t dt = 3

2
. Again from Example 5

The curve’s moment about the x-axis is

Mx =
L

y∼ dm =
L

p>2

0
sin3 t # 3 cos t sin t dt

= 3
L

p>2

0
sin4 t cos t dt = 3 # sin5 t

5
d p>2

0
= 3

5
.

It follows that

y =
Mx

M =
3>5
3>2 = 2

5
.

The centroid is the point (2>5, 2>5).

FIGURE 11.17 The centroid (c.m.) 
of the astroid arc in Example 7.

x

y

0

B(0, 1)

A(1, 0)

c.m.
ds

~ ~(x, y) = (cos3 t, sin3 t)
~x

~y
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EXAMPLE 8  Find the time Tc it takes for a frictionless bead to slide along the cycloid 
x = a(t - sin t), y = a(1 - cos t)  from t = 0 to t = p (see Figure 11.12).

Solution From Equation (3) in Section 11.1, we want to find the time

Tc =
L

t=p

t=0

ds

22gy

for ds and y expressed parametrically in terms of the parameter t. For the cycloid, 
dx>dt = a(1 - cos t) and dy>dt = a sin t, so

ds = B a
dx
dt
b2

+ ady
dt
b2

dt

= 2a2 (1 - 2 cos t + cos2 t + sin2 t) dt

= 2a2 (2 - 2 cos t) dt.

Substituting for ds and y in the integrand, it follows that

Tc =
L

p

0 B
a2(2 - 2 cos t)
2ga (1 - cos t)

dt y = a(1 - cos t)

=
L

p

0 A
a
g dt = pA

a
g ,

which is the amount of time it takes the frictionless bead to slide down the cycloid to B
after it is released from rest at O (see Figure 11.12).

Areas of Surfaces of Revolution

In Section 6.4 we found integral formulas for the area of a surface when a curve is 
revolved about a coordinate axis. Specifically, we found that the surface area is 
S = 12py ds for revolution about the x-axis, and S = 12px ds for revolution about the 
y-axis. If the curve is parametrized by the equations x = ƒ(t) and y = g(t), a … t … b,
where ƒ and g are continuously differentiable and (ƒ′)2 + (g′)2 7 0 on 3a, b4 , then the 
arc length differential ds is given by Equation (4). This observation leads to the following 
formulas for area of surfaces of revolution for smooth parametrized curves.

Area of Surface of Revolution for Parametrized Curves

If a smooth curve x = ƒ(t), y = g(t), a … t … b, is traversed exactly once as t
increases from a to b, then the areas of the surfaces generated by revolving the 
curve about the coordinate axes are as follows.

1. Revolution about the x-axis (y # 0):

S =
L

b

a
2py B a

dx
dt
b2

+ ady
dt
b2

dt (5)

2. Revolution about the y-axis (x # 0):

S =
L

b

a
2px B a

dx
dt
b2

+ ady
dt
b2

dt (6)

As with length, we can calculate surface area from any convenient parametrization that 
meets the stated criteria.
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EXAMPLE 9  The standard parametrization of the circle of radius 1 centered at the 
point (0, 1) in the xy-plane is

x = cos t, y = 1 + sin t, 0 … t … 2p.

Use this parametrization to find the area of the surface swept out by revolving the circle 
about the x-axis (Figure 11.18).

Solution We evaluate the formula

S =
L

b

a
2pyB a

dx
dt
b2

+ ady
dt
b2

dt
Eq. (5) for revolution 
about the x-axis;
y = 1 + sin t Ú 0

=
L

2p

0
2p(1 + sin t) 2(-sin t)2 + (cos t)2 dt

(++++)++++*
1

= 2p
L

2p

0
(1 + sin t) dt

= 2p c t - cos t d
0

2p

= 4p2.

Circle
x = cos t
y = 1 + sin t
0 ≤ t ≤ 2p

x

y

(0, 1)

FIGURE 11.18 In Example 9 we cal-
culate the area of the surface of revolution 
swept out by this parametrized curve.

Tangents to Parametrized Curves
In Exercises 1–14, find an equation for the line tangent to the curve at 
the point defined by the given value of t. Also, find the value of d2y>dx2

at this point.

1. x = 2 cos t, y = 2 sin t, t = p>4
2. x = sin 2pt, y = cos 2pt, t = -1>6
3. x = 4 sin t, y = 2 cos t, t = p>4
4. x = cos t, y = 23 cos t, t = 2p>3
5. x = t, y = 2t, t = 1>4
6. x = sec2 t - 1, y = tan t, t = -p>4
7. x = sec t, y = tan t, t = p>6
8. x = -2t + 1, y = 23t, t = 3

9. x = 2t2 + 3, y = t4, t = -1

10. x = 1>t, y = -2 + ln t, t = 1

11. x = t - sin t, y = 1 - cos t, t = p>3
12. x = cos t, y = 1 + sin t, t = p>2
13. x = 1

t + 1
, y = t

t - 1
, t = 2

14. x = t + et, y = 1 - et, t = 0

Implicitly Defined Parametrizations
Assuming that the equations in Exercises 15–20 define x and y implic-
itly as differentiable functions x = ƒ(t), y = g(t), find the slope of 
the curve x = ƒ(t), y = g(t) at the given value of t.

15. x3 + 2t2 = 9, 2y3 - 3t2 = 4, t = 2

16. x = 25 - 1t, y(t - 1) = 2t, t = 4

17. x + 2x3>2 = t2 + t, y2t + 1 + 2t2y = 4, t = 0

18. x sin t + 2x = t, t sin t - 2t = y, t = p

19. x = t3 + t, y + 2t3 = 2x + t2, t = 1

20. t = ln (x - t), y = tet, t = 0

Exercises 11.2

Surface Area
Find the areas of the surfaces generated by revolving the curves in 
Exercises 31–34 about the indicated axes.

31. x = cos t, y = 2 + sin t, 0 … t … 2p; x@axis

Area
21. Find the area under one arch of the cycloid

x = a(t - sin t), y = a(1 - cos t).

22. Find the area enclosed by the y-axis and the curve

x = t - t2, y = 1 + e-t .

23. Find the area enclosed by the ellipse

x = a cos t, y = b sin t, 0 … t … 2p .

24. Find the area under y = x3 over 30, 14  using the following  
parametrizations.

a. x = t2, y = t6 b. x = t3, y = t9

29. x = 8 cos t + 8t sin t
y = 8 sin t - 8t cos t,
0 … t … p>2

30. x = ln (sec t + tan t) - sin t

y = cos t, 0 … t … p>3

Lengths of Curves
Find the lengths of the curves in Exercises 25–30.

25. x = cos t, y = t + sin t, 0 … t … p
26. x = t3, y = 3t2>2, 0 … t … 23

27. x = t2>2, y = (2t + 1)3>2>3, 0 … t … 4

28. x = (2t + 3)3>2>3, y = t + t2>2, 0 … t … 3
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32. x = (2>3)t3>2, y = 22t, 0 … t … 23; y@axis

33. x = t + 22, y = (t2>2) + 22t, -22 … t … 22; y@axis

34. x = ln (sec t + tan t) - sin t, y = cos t, 0 … t … p>3; x-axis

35. A cone frustum The line segment joining the points (0, 1) and 
(2, 2) is revolved about the x-axis to generate a frustum of a cone. 
Find the surface area of the frustum using the parametrization 
x = 2t, y = t + 1, 0 … t … 1. Check your result with the geom-
etry formula: Area = p(r1 + r2)(slant height).

36. A cone The line segment joining the origin to the point (h, r) is 
revolved about the x-axis to generate a cone of height h and base 
radius r. Find the cone’s surface area with the parametric equa-
tions x = ht, y = rt, 0 … t … 1. Check your result with the 
geometry formula: Area = pr(slant height).

Centroids
37. Find the coordinates of the centroid of the curve

x = cos t + t sin t, y = sin t - t cos t, 0 … t … p>2.

38. Find the coordinates of the centroid of the curve

x = et cos t, y = et sin t, 0 … t … p.

39. Find the coordinates of the centroid of the curve

x = cos t, y = t + sin t, 0 … t … p.

40. Most centroid calculations for curves are done with a calculator 
or computer that has an integral evaluation program. As a case in 
point, find, to the nearest hundredth, the coordinates of the cen-
troid of the curve

x = t3, y = 3t2>2, 0 … t … 23.

Theory and Examples
41. Length is independent of parametrization To illustrate the 

fact that the numbers we get for length do not depend on the way we 
parametrize our curves (except for the mild restrictions preventing 
doubling back mentioned earlier), calculate the length of the semi-
circle y = 21 - x2 with these two different parametrizations:

  a. x = cos 2t, y = sin 2t, 0 … t … p>2.

b. x = sin pt, y = cos pt, -1>2 … t … 1>2.

42. a. Show that the Cartesian formula

L =
L

d

c B1 + adx
dy
b2

dy

    for the length of the curve x = g(y), c … y … d  (Section 6.3, 
Equation 4), is a special case of the parametric length formula

L =
L

b

a B a
dx
dt
b2

+ ady
dt
b2

dt.

   Use this result to find the length of each curve.

  b. x = y3>2, 0 … y … 4>3
c. x = 3

2
y2>3, 0 … y … 1

43. The curve with parametric equations

x = (1 + 2 sin u) cos u, y = (1 + 2 sin u) sin u

  is called a limaçon and is shown in the accompanying figure. Find 
the points (x, y) and the slopes of the tangent lines at these points for

  a. u = 0. b. u = p>2 . c. u = 4p>3 .

T

x

y

−1

1

3

1

44. The curve with parametric equations

x = t, y = 1 - cos t, 0 … t … 2p

  is called a sinusoid and is shown in the accompanying figure. 
Find the point (x, y) where the slope of the tangent line is

  a. largest. b. smallest.

x

y

2

0 2p

The curves in Exercises 45 and 46 are called Bowditch curves or 
Lissajous figures. In each case, find the point in the interior of the 
first quadrant where the tangent to the curve is horizontal, and 
find the equations of the two tangents at the origin.

45. 46.

x

y

1−1

x = sin t
y = sin 2t

x

y

1−1

1

−1

x = sin 2t
y = sin 3t

47. Cycloid

  a. Find the length of one arch of the cycloid

x = a(t - sin t), y = a(1 - cos t).

  b. Find the area of the surface generated by revolving one arch of 
the cycloid in part (a) about the x-axis for a = 1.

48. Volume Find the volume swept out by revolving the region 
bounded by the x-axis and one arch of the cycloid

x = t - sin t, y = 1 - cos t

  about the x-axis.

COMPUTER EXPLORATIONS
In Exercises 49–52, use a CAS to perform the following steps for the 
given curve over the closed interval.

a. Plot the curve together with the polygonal path approximations for 
n = 2, 4, 8 partition points over the interval. (See Figure 11.15.)

T
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b. Find the corresponding approximation to the length of the curve 
by summing the lengths of the line segments.

c. Evaluate the length of the curve using an integral. Compare your 
approximations for n = 2, 4, 8 with the actual length given by 
the integral. How does the actual length compare with the approx-
imations as n increases? Explain your answer.

49. x = 1
3

t3, y = 1
2

t2, 0 … t … 1

50. x = 2t3 - 16t2 + 25t + 5, y = t2 + t - 3, 0 … t … 6

51. x = t - cos t, y = 1 + sin t, -p … t … p

52. x = et cos t, y = et sin t, 0 … t … p

11.3 Polar Coordinates

In this section we study polar coordinates and their relation to Cartesian coordinates. You 
will see that polar coordinates are very useful for calculating many multiple integrals stud-
ied in Chapter 15. They are also useful in describing the paths of planets and satellites.

Definition of Polar Coordinates

To define polar coordinates, we first fix an origin O (called the pole) and an initial ray
from O (Figure 11.19). Usually the positive x-axis is chosen as the initial ray. Then each 
point P can be located by assigning to it a polar coordinate pair (r, u) in which r gives 
the directed distance from O to P and u gives the directed angle from the initial ray to ray 
OP. So we label the point P as

P(r, u)

Directed angle from 
initial ray to OP

Directed distance 
from O to P

O

r

Initial ray

Origin (pole)

x

P(r, u)

u

FIGURE 11.19 To define polar 
coordinates for the plane, we start with an 
origin, called the pole, and an initial ray.

As in trigonometry, u is positive when measured counterclockwise and negative when 
measured clockwise. The angle associated with a given point is not unique. While a point 
in the plane has just one pair of Cartesian coordinates, it has infinitely many pairs of polar 
coordinates. For instance, the point 2 units from the origin along the ray u = p>6 has 
polar coordinates r = 2, u = p>6. It also has coordinates r = 2, u = -11p>6 (Figure 
11.20). In some situations we allow r to be negative. That is why we use directed distance 
in defining P(r, u). The point P(2, 7p>6) can be reached by turning 7p>6 radians coun-
terclockwise from the initial ray and going forward 2 units (Figure 11.21). It can also be 
reached by turning p>6 radians counterclockwise from the initial ray and going backward
2 units. So the point also has polar coordinates r = -2, u = p>6.

EXAMPLE 1  Find all the polar coordinates of the point P(2, p>6).

Solution We sketch the initial ray of the coordinate system, draw the ray from the ori-
gin that makes an angle of p>6 radians with the initial ray, and mark the point (2, p>6)
(Figure 11.22). We then find the angles for the other coordinate pairs of P in which r = 2
and r = -2.

For r = 2, the complete list of angles is

p
6

,
p
6
{ 2p,

p
6
{ 4p,

p
6
{ 6p,c.

O x
Initial ray
u = 0

u= p
6

−11p
6

P  2, = P  2, −11p
6

p
6a b a b

FIGURE 11.20 Polar coordinates are 
not unique.

FIGURE 11.21 Polar coordinates can 
have negative r-values.

O
x

u = 0

u= p
6

p
6

7p
6

P  2, = P –2,p
6

7p
6a b a b
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For r = -2, the angles are

- 5p
6

, - 5p
6
{ 2p, - 5p

6
{ 4p, - 5p

6
{ 6p,c.

The corresponding coordinate pairs of P are

a2,
p
6

+ 2npb , n = 0, {1, {2,c

and

a-2, - 5p
6

+ 2npb , n = 0, {1, {2,c.

When n = 0, the formulas give (2, p>6) and (-2, -5p>6). When n = 1, they give 
(2, 13p>6) and (-2, 7p>6), and so on.

O

7p
6

–5p
6

Initial ray
x

6

  2, =   –2, – 5p
6

p
6

=   –2, 7p

etc.

p
6

a b

a b

a b

FIGURE 11.22 The point P(2, p>6)
has infinitely many polar coordinate pairs 
(Example 1).

EXAMPLE 2  A circle or line can have more than one polar equation.

(a) r = 1 and r = -1 are equations for the circle of radius 1 centered at O.

(b) u = p>6, u = 7p>6, and u = -5p>6 are equations for the line in Figure 11.22.

Equations of the form r = a and u = u0 can be combined to define regions, seg-
ments, and rays.

EXAMPLE 3  Graph the sets of points whose polar coordinates satisfy the following 
conditions.

(a) 1 … r … 2 and 0 … u … p
2

(b) -3 … r … 2 and u = p
4

(c) 2p
3 … u … 5p

6
(no restriction on r)

Solution The graphs are shown in Figure 11.24.

Relating Polar and Cartesian Coordinates

When we use both polar and Cartesian coordinates in a plane, we place the two origins 
together and take the initial polar ray as the positive x-axis. The ray u = p>2, r 7 0,

Polar Equations and Graphs

If we hold r fixed at a constant value r = a ≠ 0, the point P(r, u) will lie � a �  units from 
the origin O. As u varies over any interval of length 2p, P then traces a circle of radius 
� a �  centered at O (Figure 11.23).

If we hold u fixed at a constant value u = u0 and let r vary between -q and q, the 
point P(r, u) traces the line through O that makes an angle of measure u0 with the initial 
ray. (See Figure 11.21 for an example.)

x

0 a 0

r = a

O

FIGURE 11.23 The polar equation for a 
circle is r = a.

x

y

0 1

(a)

2

x

y

0
3

(b)

2

(c)

x

y

0

1 ≤ r ≤ 2, 0 ≤ u ≤ p2

u = ,p
4

−3 ≤ r ≤ 2p
4

2p
3

5p
6

2p
3

5p
6≤ u ≤

FIGURE 11.24 The graphs of typical 
inequalities in r and u (Example 3).
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The first two of these equations uniquely determine the Cartesian coordinates x and y
given the polar coordinates r and u. On the other hand, if x and y are given, the third 
equation gives two possible choices for r (a positive and a negative value). For each 
(x, y) ≠ (0, 0), there is a unique u∊ 30, 2p) satisfying the first two equations, each then 
giving a polar coordinate representation of the Cartesian point (x, y). The other polar coor-
dinate representations for the point can be determined from these two, as in Example 1.

Equations Relating Polar and Cartesian Coordinates

x = r cos u, y = r sin u, r2 = x2 + y2, tan u =
y
x

x

y

Common
origin

0 Initial rayx

y
r

P(x, y) = P(r, u)

u = 0, r ≥ 0u

Ray u = p
2

FIGURE 11.25 The usual way to relate 
polar and Cartesian coordinates.

becomes the positive y-axis (Figure 11.25). The two coordinate systems are then related 
by the following equations.

EXAMPLE 4  Here are some plane curves expressed in terms of both polar coordinate 
and Cartesian coordinate equations.

Polar equation Cartesian equivalent

r cos u = 2 x = 2

r2 cos u sin u = 4 xy = 4

r2 cos2u - r2 sin2u = 1 x2 - y2 = 1

r = 1 + 2r cos u y2 - 3x2 - 4x - 1 = 0

r = 1 - cos u x4 + y4 + 2x2y2 + 2x3 + 2xy2 - y2 = 0

Some curves are more simply expressed with polar coordinates; others are not.

EXAMPLE 5  Find a polar equation for the circle x2 + (y - 3)2 = 9 (Figure 11.26).

Solution We apply the equations relating polar and Cartesian coordinates:

x2 + (y - 3)2 = 9

x2 + y2 - 6y + 9 = 9 Expand ( y - 3)2.

x2 + y2 - 6y = 0 Cancelation

r2 - 6r sin u = 0 x2 + y2 = r2, y = r sin u

r = 0 or r - 6 sin u = 0

r = 6 sin u Includes both possibilities

EXAMPLE 6  Replace the following polar equations by equivalent Cartesian equa-
tions and identify their graphs.

(a) r cos u = -4

(b) r2 = 4r cos u

(c) r = 4
2 cos u - sin u

Solution We use the substitutions r cos u = x, r sin u = y, and r2 = x2 + y2.

(a) r cos u = -4

The Cartesian equation: r cos u = -4

x = -4 Substitution

The graph: Vertical line through x = -4 on the x@axis

x

y

(0, 3)

0

x2 + ( y − 3)2 = 9
or

r = 6 sin u

FIGURE 11.26 The circle in Example 5.
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(b) r2 = 4r cos u

The Cartesian equation: r2 = 4r cos u

x2 + y2 = 4x

x2 - 4x + y2 = 0

x2 - 4x + 4 + y2 = 4

(x - 2)2 + y2 = 4

Substitution

Completing the square

Factoring

The graph: Circle, radius 2, center (h, k) = (2, 0)

(c) r = 4
2 cos u - sin u

The Cartesian equation: r(2 cos u - sin u) = 4

2r cos u - r sin u = 4

2x - y = 4

y = 2x - 4

Multiplying by r

Substitution

Solve for y.

The graph: Line, slope m = 2, y@intercept b = -4

Polar Coordinates
1. Which polar coordinate pairs label the same point?

  a. (3, 0) b. (-3, 0) c. (2, 2p>3)

  d. (2, 7p>3) e. (-3, p) f. (2, p>3)

  g. (-3, 2p) h. (-2, -p>3)

2. Which polar coordinate pairs label the same point?

  a. (-2, p>3) b. (2, -p>3) c. (r, u)

  d. (r, u + p) e. (-r, u) f. (2, -2p>3)

  g. (-r, u + p) h. (-2, 2p>3)

3. Plot the following points (given in polar coordinates). Then find 
all the polar coordinates of each point.

  a. (2, p>2) b. (2, 0)

  c. (-2, p>2) d. (-2, 0)

4. Plot the following points (given in polar coordinates). Then find 
all the polar coordinates of each point.

  a. (3, p>4) b. (-3, p>4)

  c. (3, -p>4) d. (-3, -p>4)

Polar to Cartesian Coordinates
5. Find the Cartesian coordinates of the points in Exercise 1.

6. Find the Cartesian coordinates of the following points (given in 
polar coordinates).

  a. 122, p>42 b. (1, 0)

  c. (0, p>2) d. 1-22, p>42

  e. (-3, 5p>6) f. (5, tan-1(4>3))

  g. (-1, 7p) h. 1223, 2p>32
Cartesian to Polar Coordinates
7. Find the polar coordinates, 0 … u 6 2p and r Ú 0, of the fol-

lowing points given in Cartesian coordinates.

a. (1, 1) b. (-3, 0)

  c. 123, -12 d. (-3, 4)

8. Find the polar coordinates, -p … u 6 p and r Ú 0, of the fol-
lowing points given in Cartesian coordinates.

  a. (-2, -2) b. (0, 3)

c. 1-23, 12 d. (5, -12)

9. Find the polar coordinates, 0 … u 6 2p and r … 0, of the fol-
lowing points given in Cartesian coordinates.

  a. (3, 3) b. (-1, 0)

  c. 1-1, 232 d. (4, -3)

10. Find the polar coordinates, -p … u 6 2p and r … 0, of the fol-
lowing points given in Cartesian coordinates.

  a. (-2, 0) b. (1, 0)

  c. (0, -3) d. a23
2

,
1
2
b

Graphing Sets of Polar Coordinate Points
Graph the sets of points whose polar coordinates satisfy the equations 
and inequalities in Exercises 11–26.

11. r = 2 12. 0 … r … 2

13. r Ú 1 14. 1 … r … 2

Exercises 11.3
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15. 0 … u … p>6, r Ú 0 16. u = 2p>3, r … -2

17. u = p>3, -1 … r … 3 18. u = 11p>4, r Ú -1

19. u = p>2, r Ú 0 20. u = p>2, r … 0

21. 0 … u … p, r = 1 22. 0 … u … p, r = -1

23. p>4 … u … 3p>4, 0 … r … 1

24. -p>4 … u … p>4, -1 … r … 1

25. -p>2 … u … p>2, 1 … r … 2

26. 0 … u … p>2, 1 … � r � … 2

Polar to Cartesian Equations
Replace the polar equations in Exercises 27–52 with equivalent Carte-
sian equations. Then describe or identify the graph.

27. r cos u = 2 28. r sin u = -1

29. r sin u = 0 30. r cos u = 0

31. r = 4 csc u 32. r = -3 sec u

33. r cos u + r sin u = 1 34. r sin u = r cos u

35. r2 = 1 36. r2 = 4r sin u

37. r = 5
sin u - 2 cos u

38. r2 sin 2u = 2

39. r = cot u csc u 40. r = 4 tan u sec u

41. r = csc u er cos u 42. r sin u = ln r + ln cos u

43. r2 + 2r2 cos u sin u = 1 44. cos2u = sin2u

45. r2 = -4r cos u 46. r2 = -6r sin u

47. r = 8 sin u 48. r = 3 cos u

49. r = 2 cos u + 2 sin u 50. r = 2 cos u - sin u

51. r sin au + p
6
b = 2 52. r sin a2p

3
- ub = 5

Cartesian to Polar Equations
Replace the Cartesian equations in Exercises 53–66 with equivalent 
polar equations.

53. x = 7 54. y = 1 55. x = y

56. x - y = 3 57. x2 + y2 = 4 58. x2 - y2 = 1

59.
x2

9
+

y2

4
= 1 60. xy = 2

61. y2 = 4x 62. x2 + xy + y2 = 1

63. x2 + (y - 2)2 = 4 64. (x - 5)2 + y2 = 25

65. (x - 3)2 + (y + 1)2 = 4 66. (x + 2)2 + (y - 5)2 = 16

67. Find all polar coordinates of the origin.

68. Vertical and horizontal lines

  a. Show that every vertical line in the xy-plane has a polar equa-
tion of the form r = a sec u.

  b. Find the analogous polar equation for horizontal lines in the 
xy-plane.

11.4 Graphing Polar Coordinate Equations

It is often helpful to graph an equation expressed in polar coordinates in the Cartesian xy-
plane. This section describes some techniques for graphing these equations using symme-
tries and tangents to the graph.

Symmetry

Figure 11.27 illustrates the standard polar coordinate tests for symmetry. The following 
summary says how the symmetric points are related.

Symmetry Tests for Polar Graphs in the Cartesian xy-Plane

1. Symmetry about the x-axis: If the point (r, u) lies on the graph, then the point 
(r, -u) or (-r, p - u) lies on the graph (Figure 11.27a).

2. Symmetry about the y-axis: If the point (r, u) lies on the graph, then the point 
(r, p - u) or (-r, -u) lies on the graph (Figure 11.27b).

3. Symmetry about the origin: If the point (r, u) lies on the graph, then the point 
(-r, u) or (r, u + p) lies on the graph (Figure 11.27c).
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Slope of the Curve r = ƒ(U) in the Cartesian xy-Plane

dy
dx
`
(r, u)

=
ƒ′(u) sin u + ƒ(u) cos u
ƒ′(u) cos u - ƒ(u) sin u

provided dx>du ≠ 0 at (r, u).

If the curve r = ƒ(u) passes through the origin at u = u0, then ƒ(u0) = 0, and the slope 
equation gives

dy
dx
`
(0, u0)

=
ƒ′(u0) sin u0
ƒ′(u0) cos u0

= tan u0.

If the graph of r = ƒ(u) passes through the origin at the value u = u0, the slope of the 
curve there is tan u0. The reason we say “slope at (0, u0)” and not just “slope at the origin” 
is that a polar curve may pass through the origin (or any point) more than once, with dif-
ferent slopes at different u@values. This is not the case in our first example, however.

Slope

The slope of a polar curve r = ƒ(u) in the xy-plane is still given by dy >dx, which is not 
r′ = dƒ>du. To see why, think of the graph of ƒ as the graph of the parametric equations

x = r cos u = ƒ(u) cos u, y = r sin u = ƒ(u) sin u.

If ƒ is a differentiable function of u, then so are x and y and, when dx>du ≠ 0, we can 
calculate dy >dx from the parametric formula

dy
dx

=
dy>du
dx>du

Section 11.2, Eq. (1) 
with t = u

=

d
du

(ƒ(u) # sin u)

d
du

(ƒ(u) # cos u)

=

df
du

sin u + ƒ(u) cos u

df
du

cos u - ƒ(u) sin u
Product Rule for derivatives

Therefore we see that dy>dx is not the same as dƒ>du.

x

y

(r, u)

(r, −u)
or (−r, p − u)

0

(a) About the x-axis

x

y

0

0

(b) About the y-axis

(r, p − u)
or (−r, −u) (r, u)

x

y

(−r, u) or (r, u + p)

(c) About the origin

(r, u)

FIGURE 11.27 Three tests for 
symmetry in polar coordinates.

EXAMPLE 1  Graph the curve r = 1 - cos u in the Cartesian xy-plane.

Solution The curve is symmetric about the x-axis because

(r, u) on the graph 1 r = 1 - cos u

1 r = 1 - cos (-u) cos u = cos (-u)

1 (r, -u) on the graph.
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As u increases from 0 to p, cos u decreases from 1 to -1, and r = 1 - cos u increases 
from a minimum value of 0 to a maximum value of 2. As u continues on from p to 
2p, cos u increases from -1 back to 1 and r decreases from 2 back to 0. The curve starts 
to repeat when u = 2p because the cosine has period 2p.

The curve leaves the origin with slope tan (0) = 0 and returns to the origin with slope 
tan (2p) = 0.

We make a table of values from u = 0 to u = p, plot the points, draw a smooth curve 
through them with a horizontal tangent at the origin, and reflect the curve across the x-axis
to complete the graph (Figure 11.28). The curve is called a cardioid because of its heart 
shape.

(b)

x

y
r2 = 4 cos u

2 2
0

Loop for r = −2
"

cos u,

≤ u ≤ p
2

p
2

− ≤ u ≤ p
2

p
2

−

Loop for r = 2
"

cos u,

FIGURE 11.29 The graph of r2 = 4 cos u. The arrows show the direction of increas-
ing u. The values of r in the table are rounded (Example 2).

U cos U r = t22cos U

0 1 {2

{
p
6
23
2

≈{1.9

{
p
4

1

22
≈{1.7

{
p
3

1
2

≈{1.4

{
p
2

0 0

(a)

U r = 1 − cos U

0 0

p
3

1
2

p
2

1

2p
3

3
2

p 2

EXAMPLE 2  Graph the curve r2 = 4 cos u in the Cartesian xy-plane.

Solution The equation r2 = 4 cos u requires cos u Ú 0, so we get the entire graph by 
running u from -p>2 to p>2. The curve is symmetric about the x-axis because

(r, u) on the graph 1 r2 = 4 cos u

1 r2 = 4 cos (-u)      cos u = cos (-u)

1 (r, -u) on the graph.

The curve is also symmetric about the origin because

(r, u) on the graph 1 r2 = 4 cos u

1 (-r)2 = 4 cos u

1 (-r, u) on the graph.

Together, these two symmetries imply symmetry about the y-axis.
The curve passes through the origin when u = -p>2 and u = p>2. It has a vertical 

tangent both times because tan u is infinite.
For each value of u in the interval between -p>2 and p>2, the formula r2 = 4 cos u

gives two values of r:

r = {22cos u.

We make a short table of values, plot the corresponding points, and use information 
about symmetry and tangents to guide us in connecting the points with a smooth curve 
(Figure 11.29).

(a)

(p, 2)

(p, 2)

3
2

(b)

x

y

02

1

(c)

y

x
02

1

r = 1 − cos u

2p
3

3
2

,

1, p2

p
3

1
2

,

2p
3

3
2

,

4p
3

3
2

,

1, p
2

1, 3p
2

p
3

1
2

,

5p
3

1
2

,

a b

a b

a b

a b

a b

a b

a b

a b

a b

FIGURE 11.28 The steps in graphing the 
cardioid r = 1 - cos u (Example 1). The 
arrow shows the direction of increasing u.
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Converting a Graph from the rU- to xy-Plane

One way to graph a polar equation r = ƒ(u) in the xy-plane is to make a table of 
(r, u)@values, plot the corresponding points there, and connect them in order of increasing 
u. This can work well if enough points have been plotted to reveal all the loops and dim-
ples in the graph. Another method of graphing is to

1. first graph the function r = ƒ(u) in the Cartesian ru@plane,

2. then use that Cartesian graph as a “table” and guide to sketch the polar coordinate 
graph in the xy-plane.

This method is sometimes better than simple point plotting because the first Cartesian 
graph, even when hastily drawn, shows at a glance where r is positive, negative, and non-
existent, as well as where r is increasing and decreasing. Here’s an example.

USING TECHNOLOGY Graphing Polar Curves Parametrically
For complicated polar curves we may need to use a graphing calculator or computer to 
graph the curve. If the device does not plot polar graphs directly, we can convert r = ƒ(u)
into parametric form using the equations

x = r cos u = ƒ(u) cos u, y = r sin u = ƒ(u) sin u.

Then we use the device to draw a parametrized curve in the Cartesian xy-plane. It may be 
necessary to use the parameter t rather than u for the graphing device.

EXAMPLE 3  Graph the lemniscate curve r2 = sin 2u in the Cartesian xy-plane.

Solution Here we begin by plotting r2 (not r) as a function of u in the Cartesian 
r2u@plane. See Figure 11.30a. We pass from there to the graph of r = {2sin 2u in the 
ru@plane (Figure 11.30b), and then draw the polar graph (Figure 11.30c). The graph in 
Figure 11.30b “covers” the final polar graph in Figure 11.30c twice. We could have man-
aged with either loop alone, with the two upper halves, or with the two lower halves. The 
double covering does no harm, however, and we actually learn a little more about the 
behavior of the function this way.

Symmetries and Polar Graphs
Identify the symmetries of the curves in Exercises 1–12. Then sketch 
the curves in the xy-plane.

1. r = 1 + cos u 2. r = 2 - 2 cos u

3. r = 1 - sin u 4. r = 1 + sin u

5. r = 2 + sin u 6. r = 1 + 2 sin u

7. r = sin (u>2) 8. r = cos (u>2)

9. r2 = cos u 10. r2 = sin u

11. r2 = -sin u 12. r2 = -cos u

Graph the lemniscates in Exercises 13–16. What symmetries do these 
curves have?

13. r2 = 4 cos 2u 14. r2 = 4 sin 2u

15. r2 = -sin 2u 16. r2 = -cos 2u

Slopes of Polar Curves in the xy-Plane
Find the slopes of the curves in Exercises 17–20 at the given points. 
Sketch the curves along with their tangents at these points.

17. Cardioid r = -1 + cos u; u = {p>2
18. Cardioid r = -1 + sin u; u = 0, p

19. Four-leaved rose r = sin 2u; u = {p>4, {3p>4
20. Four-leaved rose r = cos 2u; u = 0, {p>2, p

Exercises 11.4
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FIGURE 11.30 To plot r = ƒ(u) in 
the Cartesian ru@plane in (b), we first 
plot r2 = sin 2u in the r2u@plane in (a) 
and then ignore the values of u for which 
sin 2u is negative. The radii from the 
sketch in (b) cover the polar graph of the 
lemniscate in (c) twice (Example 3).
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Graphing Limaçons
Graph the limaçons in Exercises 21–24. Limaçon (“lee-ma-sahn”) is 
Old French for “snail.” You will understand the name when you graph 
the limaçons in Exercise 21. Equations for limaçons have the form 
r = a { b cos u or r = a { b sin u. There are four basic shapes.

21. Limaçons with an inner loop

  a. r = 1
2

+ cos u b. r = 1
2

+ sin u

22. Cardioids

  a. r = 1 - cos u b. r = -1 + sin u

23. Dimpled limaçons

  a. r = 3
2

+ cos u b. r = 3
2

- sin u

24. Oval limaçons

  a. r = 2 + cos u b. r = -2 + sin u

Graphing Polar Regions and Curves in the xy-Plane
25. Sketch the region defined by the inequalities -1 … r … 2 and 

-p>2 … u … p>2.

26. Sketch the region defined by the inequalities 0 … r … 2 sec u
and -p>4 … u … p>4.

In Exercises 27 and 28, sketch the region defined by the inequality.

27. 0 … r … 2 - 2 cos u 28. 0 … r2 … cos u

29. Which of the following has the same graph as r = 1 - cos u?

  a. r = -1 - cos u b. r = 1 + cos u

  Confirm your answer with algebra.

T

30. Which of the following has the same graph as r = cos 2u?

  a. r = -sin (2u + p>2) b. r = -cos (u>2)

  Confirm your answer with algebra.
31. A rose within a rose Graph the equation r = 1 - 2 sin 3u.

32. The nephroid of Freeth Graph the nephroid of Freeth:

r = 1 + 2 sin
u

2
.

33. Roses Graph the roses r = cos mu for m = 1>3, 2, 3, and 7.

34. Spirals Polar coordinates are just the thing for defining spirals. 
Graph the following spirals.

  a. r = u
b. r = -u

  c. A logarithmic spiral: r = eu>10

  d. A hyperbolic spiral: r = 8>u
e. An equilateral hyperbola: r = {10>2u

  (Use different colors for the two branches.)

35. Graph the equation r = sin18
7 u2 for 0 … u … 14p.

36. Graph the equation

r = sin2 (2.3u) + cos4 (2.3u)

  for 0 … u … 10p.

T

T

T

T

T

T

T

11.5 Areas and Lengths in Polar Coordinates

This section shows how to calculate areas of plane regions and lengths of curves in polar 
coordinates. The defining ideas are the same as before, but the formulas are different in 
polar versus Cartesian coordinates.

Area in the Plane

The region OTS in Figure 11.31 is bounded by the rays u = a and u = b and the curve 
r = ƒ(u). We approximate the region with n nonoverlapping fan-shaped circular sec-
tors based on a partition P of angle TOS. The typical sector has radius rk = ƒ(uk) and 
central angle of radian measure ∆uk. Its area is ∆uk>2p times the area of a circle of 
radius rk , or

Ak = 1
2

rk
2 ∆uk = 1

2
1ƒ(uk)22 ∆uk.

The area of region OTS is approximately

a

n

k=1
Ak = a

n

k=1

1
2
1ƒ(uk)22 ∆uk.

If ƒ is continuous, we expect the approximations to improve as the norm of the parti-
tion P goes to zero, where the norm of P is the largest value of ∆uk. We are then led to the 
following formula defining the region’s area:

x

y

O

S rn

rk

u = b

u = ar1

r2

uk

r = f (u)

( f (uk), uk)

Δuk

T

FIGURE 11.31 To derive a formula for 
the area of region OTS, we approximate 
the region with fan-shaped circular sectors.


