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Graphing Limaçons
Graph the limaçons in Exercises 21–24. Limaçon (“lee-ma-sahn”) is 
Old French for “snail.” You will understand the name when you graph 
the limaçons in Exercise 21. Equations for limaçons have the form 
r = a { b cos u or r = a { b sin u. There are four basic shapes.

21. Limaçons with an inner loop

  a. r = 1
2

+ cos u b. r = 1
2

+ sin u

22. Cardioids

  a. r = 1 - cos u b. r = -1 + sin u

23. Dimpled limaçons

  a. r = 3
2

+ cos u b. r = 3
2

- sin u

24. Oval limaçons

  a. r = 2 + cos u b. r = -2 + sin u

Graphing Polar Regions and Curves in the xy-Plane
25. Sketch the region defined by the inequalities -1 … r … 2 and 

-p>2 … u … p>2.

26. Sketch the region defined by the inequalities 0 … r … 2 sec u
and -p>4 … u … p>4.

In Exercises 27 and 28, sketch the region defined by the inequality.

27. 0 … r … 2 - 2 cos u 28. 0 … r2 … cos u

29. Which of the following has the same graph as r = 1 - cos u?

  a. r = -1 - cos u b. r = 1 + cos u

  Confirm your answer with algebra.

T

30. Which of the following has the same graph as r = cos 2u?

  a. r = -sin (2u + p>2) b. r = -cos (u>2)

  Confirm your answer with algebra.
31. A rose within a rose Graph the equation r = 1 - 2 sin 3u.

32. The nephroid of Freeth Graph the nephroid of Freeth:

r = 1 + 2 sin
u

2
.

33. Roses Graph the roses r = cos mu for m = 1>3, 2, 3, and 7.

34. Spirals Polar coordinates are just the thing for defining spirals. 
Graph the following spirals.

  a. r = u
b. r = -u

  c. A logarithmic spiral: r = eu>10

  d. A hyperbolic spiral: r = 8>u
e. An equilateral hyperbola: r = {10>2u

  (Use different colors for the two branches.)

35. Graph the equation r = sin18
7 u2 for 0 … u … 14p.

36. Graph the equation

r = sin2 (2.3u) + cos4 (2.3u)

  for 0 … u … 10p.

T

T

T

T

T

T

T

11.5 Areas and Lengths in Polar Coordinates

This section shows how to calculate areas of plane regions and lengths of curves in polar 
coordinates. The defining ideas are the same as before, but the formulas are different in 
polar versus Cartesian coordinates.

Area in the Plane

The region OTS in Figure 11.31 is bounded by the rays u = a and u = b and the curve 
r = ƒ(u). We approximate the region with n nonoverlapping fan-shaped circular sec-
tors based on a partition P of angle TOS. The typical sector has radius rk = ƒ(uk) and 
central angle of radian measure ∆uk. Its area is ∆uk>2p times the area of a circle of 
radius rk , or

Ak = 1
2

rk
2 ∆uk = 1

2
1ƒ(uk)22 ∆uk.

The area of region OTS is approximately

a

n

k=1
Ak = a

n

k=1

1
2
1ƒ(uk)22 ∆uk.

If ƒ is continuous, we expect the approximations to improve as the norm of the parti-
tion P goes to zero, where the norm of P is the largest value of ∆uk. We are then led to the 
following formula defining the region’s area:

x

y

O

S rn

rk

u = b

u = ar1

r2

uk

r = f (u)

( f (uk), uk)

Δuk

T

FIGURE 11.31 To derive a formula for 
the area of region OTS, we approximate 
the region with fan-shaped circular sectors.
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A = lim
‘P‘S0 a

n

k=1

1
2
1ƒ(uk)22 ∆uk

=
L

b

a

1
2
1ƒ(u)22 du.

Area of the Fan-Shaped Region Between the Origin and the Curve r = ƒ(U) ,
A " U " B

A =
L

b

a

1
2

r2 du

This is the integral of the area differential (Figure 11.32)

dA = 1
2

r2 du = 1
2
1ƒ(u)22 du.

O
x

y

P(r, u)

du

u

r

dA =    r 2du1
2

FIGURE 11.32 The area differential dA
for the curve r = ƒ(u).

EXAMPLE 1  Find the area of the region in the xy-plane enclosed by the cardioid 
r = 2(1 + cos u).

Solution We graph the cardioid (Figure 11.33) and determine that the radius OP sweeps 
out the region exactly once as u runs from 0 to 2p. The area is therefore

L

u=2p

u=0

1
2

r2 du =
L

2p

0

1
2
# 4(1 + cos u)2 du

=
L

2p

0
2(1 + 2 cos u + cos2u) du

=
L

2p

0
a2 + 4 cos u + 2 # 1 + cos 2u

2
b du

=
L

2p

0
(3 + 4 cos u + cos 2u) du

= c 3u + 4 sin u + sin 2u
2
d

0

2p

= 6p - 0 = 6p.

To find the area of a region like the one in Figure 11.34, which lies between two polar 
curves r1 = r1(u) and r2 = r2(u) from u = a to u = b, we subtract the integral of 
(1>2)r1

2 du from the integral of (1>2)r2
2 du. This leads to the following formula.

x

y

0 4

r

r = 2(1 + cos u)

u = 0, 2p

P(r, u)2

−2

FIGURE 11.33 The cardioid in Example 1.

y

x
0

u = b

u = a

r2

r1

FIGURE 11.34 The area of the shaded 
region is calculated by subtracting the area 
of the region between r1 and the origin 
from the area of the region between r2 and 
the origin.

Area of the Region 0 " r1(U) " r " r2(U), A " U " B

A =
L

b

a

1
2

r2
2 du -

L

b

a

1
2

r1
2 du =

L

b

a

1
2
1r2

2 - r1
22 du (1)

EXAMPLE 2  Find the area of the region that lies inside the circle r = 1 and outside 
the cardioid r = 1 - cos u.

Solution We sketch the region to determine its boundaries and find the limits of integra-
tion (Figure 11.35). The outer curve is r2 = 1, the inner curve is r1 = 1 - cos u, and u
runs from -p>2 to p>2. The area, from Equation (1), is

x

y

0

r2 = 1

r1 = 1 − cos u

Upper limit
u = p
2

Lower limit
u = −p
2

u

FIGURE 11.35 The region and limits of 
integration in Example 2.
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A =
L

p>2

-p>2
1
2
1r2

2 - r1
22 du

= 2
L

p>2

0

1
2
1r2

2 - r1
22 du Symmetry

=
L

p>2

0
(1 - (1 - 2 cos u + cos2u)) du Square r1.

=
L

p>2

0
(2 cos u - cos2u) du =

L

p>2

0
a2 cos u - 1 + cos 2u

2
b du

= c 2 sin u - u
2

- sin 2u
4
d

0

p>2
= 2 - p

4
.

The fact that we can represent a point in different ways in polar coordinates requires extra 
care in deciding when a point lies on the graph of a polar equation and in determining the 
points in which polar graphs intersect. (We needed intersection points in Example 2.) In 
Cartesian coordinates, we can always find the points where two curves cross by solving 
their equations simultaneously. In polar coordinates, the story is different. Simultaneous 
solution may reveal some intersection points without revealing others, so it is sometimes 
difficult to find all points of intersection of two polar curves. One way to identify all the 
points of intersection is to graph the equations.

Length of a Polar Curve

We can obtain a polar coordinate formula for the length of a curve r = ƒ(u), a … u … b,
by parametrizing the curve as

x = r cos u = ƒ(u) cos u, y = r sin u = ƒ(u) sin u, a … u … b. (2)

The parametric length formula, Equation (3) from Section 11.2, then gives the length as

L =
L

b

a B a
dx
du
b2

+ ady
du
b2

du.

This equation becomes

L =
L

b

a Br2 + adr
du
b2

du

when Equations (2) are substituted for x and y (Exercise 29).

Length of a Polar Curve

If r = ƒ(u) has a continuous first derivative for a … u … b and if the point 
P(r, u) traces the curve r = ƒ(u) exactly once as u runs from a to b, then the 
length of the curve is

L =
L

b

a Br2 + adr
du
b2

du. (3)

EXAMPLE 3  Find the length of the cardioid r = 1 - cos u.

Solution We sketch the cardioid to determine the limits of integration (Figure 11.36). 
The point P(r, u) traces the curve once, counterclockwise as u runs from 0 to 2p, so these 
are the values we take for a and b.

0

1

2

r

x

y

u

r = 1 − cos u
P(r, u)

FIGURE 11.36 Calculating the length 
of a cardioid (Example 3).
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With

r = 1 - cos u,
dr
du

= sin u,

we have

r2 + adr
du
b2

= (1 - cos u)2 + (sin u)2

= 1 - 2 cos u + cos2 u + sin2 u = 2 - 2 cos u(++)++*
1

and

L =
L

b

a Br2 + adr
du
b2

du =
L

2p

0
22 - 2 cos u du

=
L

2p

0 A4 sin2 u
2

du 1 - cos u = 2 sin2 (u>2)

=
L

2p

0
2 ` sin

u
2
` du

=
L

2p

0
2 sin

u
2

du       sin (u>2) Ú 0 for 0 … u … 2p

= c-4 cos
u
2
d

0

2p

= 4 + 4 = 8.

Finding Polar Areas
Find the areas of the regions in Exercises 1–8.

1. Bounded by the spiral r = u for 0 … u … p

x

y

0

r = u
p
2
p
2

,

(p, p)

a b

2. Bounded by the circle r = 2 sin u for p>4 … u … p>2

x

y

0

r = 2 sin u

2
p
2

,

u = p
4

a b

3. Inside the oval limaçon r = 4 + 2 cos u

4. Inside the cardioid r = a(1 + cos u), a 7 0

5. Inside one leaf of the four-leaved rose r = cos 2u

6. Inside one leaf of the three-leaved rose r = cos 3u

x

y

1

r = cos 3u

7. Inside one loop of the lemniscate r2 = 4 sin 2u

8. Inside the six-leaved rose r2 = 2 sin 3u

Find the areas of the regions in Exercises 9–18.

9. Shared by the circles r = 2 cos u and r = 2 sin u

10. Shared by the circles r = 1 and r = 2 sin u

11. Shared by the circle r = 2 and the cardioid r = 2(1 - cos u)

12. Shared by the cardioids r = 2(1 + cos u) and r = 2(1 - cos u)

13. Inside the lemniscate r2 = 6 cos 2u and outside the circle r = 23

Exercises 11.5
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14. Inside the circle r = 3a cos u and outside the cardioid 
r = a(1 + cos u), a 7 0

15. Inside the circle r = -2 cos u and outside the circle r = 1

16. Inside the circle r = 6 above the line r = 3 csc u

17. Inside the circle r = 4 cos u and to the right of the vertical line 
r = sec u

18. Inside the circle r = 4 sin u and below the horizontal line 
r = 3 csc u

19. a. Find the area of the shaded region in the accompanying figure.

x

y

0 1−1

(1, p
4)

r = tan u
< u < p

2
p
2

–

r = (
"

2
2) csc u

b. It looks as if the graph of r = tan u, -p>2 6 u 6 p>2, could 
be asymptotic to the lines x = 1 and x = -1. Is it? Give 
reasons for your answer.

20. The area of the region that lies inside the cardioid curve 
r = cos u + 1 and outside the circle r = cos u is not

1
2L

2p

0
3(cos u + 1)2 - cos2u4 du = p.

  Why not? What is the area? Give reasons for your answers.

Finding Lengths of Polar Curves
Find the lengths of the curves in Exercises 21–28.

21. The spiral r = u2, 0 … u … 25

22. The spiral r = eu>22, 0 … u … p
23. The cardioid r = 1 + cos u

24. The curve r = a sin2 (u>2), 0 … u … p, a 7 0

25. The parabolic segment r = 6>(1 + cos u), 0 … u … p>2
26. The parabolic segment r = 2>(1 - cos u), p>2 … u … p

27. The curve r = cos3 (u>3), 0 … u … p>4
28. The curve r = 21 + sin 2u, 0 … u … p22

29. The length of the curve r = ƒ(U) , A … U … B Assuming
that the necessary derivatives are continuous, show how the sub-
stitutions

x = ƒ(u) cos u, y = ƒ(u) sin u

  (Equations 2 in the text) transform

L =
L

b

a B a
dx
du
b2

+ ady
du
b2

du

  into

L =
L

b

a Br2 + adr
du
b2

du.

30. Circumferences of circles As usual, when faced with a new 
formula, it is a good idea to try it on familiar objects to be sure it 
gives results consistent with past experience. Use the length for-
mula in Equation (3) to calculate the circumferences of the fol-
lowing circles (a 7 0).

  a. r = a b. r = a cos u c. r = a sin u

Theory and Examples
31. Average value If ƒ is continuous, the average value of the polar 

coordinate r over the curve r = ƒ(u), a … u … b, with respect to 
u is given by the formula

rav = 1
b - aL

b

a

ƒ(u) du.

  Use this formula to find the average value of r with respect to u
over the following curves (a 7 0).

  a. The cardioid r = a(1 - cos u)

  b. The circle r = a

  c. The circle r = a cos u, -p>2 … u … p>2
32. r = ƒ(U) vs. r = 2ƒ(U) Can anything be said about the rela-

tive lengths of the curves r = ƒ(u), a … u … b, and r = 2ƒ(u),
a … u … b? Give reasons for your answer.

11.6 Conic Sections

In this section we define and review parabolas, ellipses, and hyperbolas geometrically and 
derive their standard Cartesian equations. These curves are called conic sections or conics
because they are formed by cutting a double cone with a plane (Figure 11.37). This geom-
etry method was the only way they could be described by Greek mathematicians who did 
not have our tools of Cartesian or polar coordinates. In the next section we express the 
conics in polar coordinates.

Parabolas

DEFINITIONS A set that consists of all the points in a plane equidistant from a 
given fixed point and a given fixed line in the plane is a parabola. The fixed 
point is the focus of the parabola. The fixed line is the directrix.
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Circle: plane perpendicular
to cone axis

Ellipse: plane oblique
to cone axis

Point: plane through
cone vertex only

Single line: plane
tangent to cone

Pair of intersecting lines

Parabola: plane parallel
to side of cone

Hyperbola: plane
parallel to cone axis

(a)

(b)

FIGURE 11.37 The standard conic sections (a) are the curves in which a plane cuts a double cone. Hyperbolas come in two parts, 
called branches. The point and lines obtained by passing the plane through the cone’s vertex (b) are degenerate conic sections.

If the focus F lies on the directrix L, the parabola is the line through F perpendicular to 
L. We consider this to be a degenerate case and assume henceforth that F does not lie on L.

A parabola has its simplest equation when its focus and directrix straddle one of the 
coordinate axes. For example, suppose that the focus lies at the point F(0, p) on the positive 
y-axis and that the directrix is the line y = -p (Figure 11.38). In the notation of the figure, 
a point P(x, y) lies on the parabola if and only if PF = PQ. From the distance formula,

PF = 2(x - 0)2 + (y - p)2 = 2x2 + (y - p)2

PQ = 2(x - x)2 + ( y - (-p))2 = 2( y + p)2.

When we equate these expressions, square, and simplify, we get

y = x2

4p
or x2 = 4py. Standard form (1)

These equations reveal the parabola’s symmetry about the y-axis. We call the y-axis the 
axis of the parabola (short for “axis of symmetry”).

The point where a parabola crosses its axis is the vertex. The vertex of the parabola 
x2 = 4py lies at the origin (Figure 11.38). The positive number p is the parabola’s focal 
length.

Directrix: y = −p

The vertex lies
halfway between
directrix and focus.

Q(x, −p)

P(x, y)

F(0, p)
Focus

p

p

x2 = 4py

L

x

y

FIGURE 11.38 The standard form of 
the parabola x2 = 4py, p 7 0.
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If the parabola opens downward, with its focus at (0, -p) and its directrix the line 
y = p, then Equations (1) become

y = - x2

4p
and x2 = -4py.

By interchanging the variables x and y, we obtain similar equations for parabolas opening 
to the right or to the left (Figure 11.39).

Vertex

Directrix
x = −p

0

Focus

F(p, 0)

y2 = 4px

x

y

(a)

Directrix
x = p

0

Focus

F(−p, 0)

y2 = −4px

Vertex

x

y

(b)

FIGURE 11.39 (a) The parabola y2 = 4px. (b) The parabola y2 = -4px.

EXAMPLE 1  Find the focus and directrix of the parabola y2 = 10x.

Solution We find the value of p in the standard equation y2 = 4px:

4p = 10, so p = 10
4

= 5
2

.

Then we find the focus and directrix for this value of p:

Focus: ( p, 0) = a5
2

, 0b

Directrix: x = -p or x = - 5
2

.

Ellipses

Vertex VertexFocus FocusCenter

Focal axis

FIGURE 11.40 Points on the focal axis 
of an ellipse.

If the foci are F1(-c, 0) and F2(c, 0) (Figure 11.41), and PF1 + PF2 is denoted by 2a,
then the coordinates of a point P on the ellipse satisfy the equation

2(x + c)2 + y2 + 2(x - c)2 + y2 = 2a.

x

y

Focus Focus

Center0F1(−c, 0)
F2(c, 0)

P(x, y)

a

b

FIGURE 11.41 The ellipse defined by 
the equation PF1 + PF2 = 2a is the graph 
of the equation (x2>a2) + (y2>b2) = 1,
where b2 = a2 - c2.

DEFINITIONS An ellipse is the set of points in a plane whose distances from 
two fixed points in the plane have a constant sum. The two fixed points are the 
foci of the ellipse.

The line through the foci of an ellipse is the ellipse’s focal axis. The point on 
the axis halfway between the foci is the center. The points where the focal axis 
and ellipse cross are the ellipse’s vertices (Figure 11.40).
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To simplify this equation, we move the second radical to the right-hand side, square, iso-
late the remaining radical, and square again, obtaining

x2

a2 +
y2

a2 - c2 = 1. (2)

Since PF1 + PF2 is greater than the length F1F2 (by the triangle inequality for triangle 
PF1F2), the number 2a is greater than 2c. Accordingly, a 7 c and the number a2 - c2 in 
Equation (2) is positive.

The algebraic steps leading to Equation (2) can be reversed to show that every point P
whose coordinates satisfy an equation of this form with 0 6 c 6 a also satisfies the 
equation PF1 + PF2 = 2a. A point therefore lies on the ellipse if and only if its coordi-
nates satisfy Equation (2).

If

b = 2a2 - c2, (3)

then a2 - c2 = b2 and Equation (2) takes the form

x2

a2 +
y2

b2 = 1. (4)

Equation (4) reveals that this ellipse is symmetric with respect to the origin and both 
coordinate axes. It lies inside the rectangle bounded by the lines x = {a and y = {b. It 
crosses the axes at the points ({a, 0) and (0, {b). The tangents at these points are per-
pendicular to the axes because

dy
dx

= - b2x
a2y

Obtained from Eq. (4)
by implicit differentiation

is zero if x = 0 and infinite if y = 0.
The major axis of the ellipse in Equation (4) is the line segment of length 2a joining 

the points ({a, 0). The minor axis is the line segment of length 2b joining the points 
(0, {b). The number a itself is the semimajor axis, the number b the semiminor axis.
The number c, found from Equation (3) as

c = 2a2 - b2,

is the center-to-focus distance of the ellipse. If a = b, the ellipse is a circle.

EXAMPLE 2  The ellipse

x2

16
+

y2

9 = 1 (5)

(Figure 11.42) has

Semimajor axis: a = 216 = 4, Semiminor axis: b = 29 = 3

Center@to@focus distance: c = 216 - 9 = 27

Foci: ({c, 0) = 1{27, 02
Vertices: ({a, 0) = ({4, 0)

Center: (0, 0).

If we interchange x and y in Equation (5), we have the equation

x2

9 +
y2

16
= 1. (6)

The major axis of this ellipse is now vertical instead of horizontal, with the foci and verti-
ces on the y-axis. There is no confusion in analyzing Equations (5) and (6). If we find the 
intercepts on the coordinate axes, we will know which way the major axis runs because it 
is the longer of the two axes.

x

y

(0, 3)

(0, −3)

Vertex
(4, 0)

Vertex
(−4, 0)

Focus Focus

Center

0(−
"

7, 0) (
"

7, 0)

x2

16
y2

9
+ = 1

FIGURE 11.42 An ellipse with its 
major axis horizontal (Example 2).
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Standard-Form Equations for Ellipses Centered at the Origin

Foci on the x@axis:
x2

a2 +
y2

b2 = 1 (a 7 b)

Center@to@focus distance: c = 2a2 - b2

Foci: ({c, 0)

Vertices: ({a, 0)

Foci on the y@axis:
x2

b2 +
y2

a2 = 1 (a 7 b)

Center@to@focus distance: c = 2a2 - b2

Foci: (0, {c)

Vertices: (0, {a)

In each case, a is the semimajor axis and b is the semiminor axis.

Hyperbolas

DEFINITIONS A hyperbola is the set of points in a plane whose distances from 
two fixed points in the plane have a constant difference. The two fixed points are 
the foci of the hyperbola.

The line through the foci of a hyperbola is the focal axis. The point on the 
axis halfway between the foci is the hyperbola’s center. The points where the 
focal axis and hyperbola cross are the vertices (Figure 11.43).

If the foci are F1(-c, 0) and F2(c, 0) (Figure 11.44) and the constant difference is 2a,
then a point (x, y) lies on the hyperbola if and only if

2(x + c)2 + y2 - 2(x - c)2 + y2 = {2a. (7)

To simplify this equation, we move the second radical to the right-hand side, square, iso-
late the remaining radical, and square again, obtaining

x2

a2 +
y2

a2 - c2 = 1. (8)

So far, this looks just like the equation for an ellipse. But now a2 - c2 is negative because 
2a, being the difference of two sides of triangle PF1F2, is less than 2c, the third side.

The algebraic steps leading to Equation (8) can be reversed to show that every point 
P whose coordinates satisfy an equation of this form with 0 6 a 6 c also satisfies 
Equation (7). A point therefore lies on the hyperbola if and only if its coordinates satisfy 
Equation (8).

If we let b denote the positive square root of c2 - a2,

b = 2c2 - a2, (9)

then a2 - c2 = -b2 and Equation (8) takes the more compact form

x2

a2 -
y2

b2 = 1. (10)

Focus Focus

Center

Focal axis

Vertices

FIGURE 11.43 Points on the focal axis 
of a hyperbola.

x

y

0F1(−c, 0) F2(c, 0)

x = −a x = a

P(x, y)

FIGURE 11.44 Hyperbolas have two 
branches. For points on the right-hand 
branch of the hyperbola shown here, 
PF1 - PF2 = 2a. For points on the left-
hand branch, PF2 - PF1 = 2a. We then 
let b = 2c2 - a2.
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The differences between Equation (10) and the equation for an ellipse (Equation 4) are the 
minus sign and the new relation

c2 = a2 + b2. From Eq. (9)

Like the ellipse, the hyperbola is symmetric with respect to the origin and coordinate 
axes. It crosses the x-axis at the points ({a, 0). The tangents at these points are vertical 
because

dy
dx

= b2x
a2y

Obtained from Eq. (10) by 
implicit differentiation

is infinite when y = 0. The hyperbola has no y-intercepts; in fact, no part of the curve lies 
between the lines x = -a and x = a.

The lines

y = {
b
a x

are the two asymptotes of the hyperbola defined by Equation (10). The fastest way to find 
the equations of the asymptotes is to replace the 1 in Equation (10) by 0 and solve the new 
equation for y:

x2

a2 -
y2

b2 = 1 S x2

a2 -
y2

b2 = 0 S y = {
b
a x.

(++)++* (++)++* (+)+*
hyperbola 0 for 1 asymptotes

EXAMPLE 3  The equation

x2

4
-

y2

5
= 1 (11)

is Equation (10) with a2 = 4 and b2 = 5 (Figure 11.45). We have

Center@to@focus distance: c = 2a2 + b2 = 24 + 5 = 3

Foci: ({c, 0) = ({3, 0), Vertices: ({a, 0) = ({2, 0)

Center: (0, 0)

Asymptotes:
x2

4
-

y2

5
= 0 or y = {

25
2

x.

If we interchange x and y in Equation (11), the foci and vertices of the resulting 
hyperbola will lie along the y-axis. We still find the asymptotes in the same way as before, 
but now their equations will be y = {2x>25.

Standard-Form Equations for Hyperbolas Centered at the Origin

Foci on the x@axis:
x2

a2 -
y2

b2 = 1

Center@to@focus distance: c = 2a2 + b2

Foci: ({c, 0)

Vertices: ({a, 0)

Asymptotes:
x2

a2 -
y2

b2 = 0 or y = {
b
a x

Notice the difference in the asymptote equations (b >a in the first, a >b in the second).

Foci on the y@axis:
y2

a2 - x2

b2 = 1

Center@to@focus distance: c = 2a2 + b2

Foci: (0, {c)

Vertices: (0, {a)

Asymptotes:
y2

a2 - x2

b2 = 0 or y = {
a
b

x

x

y

F(3, 0)F(−3, 0)

2−2

y = − x"

5
2

y = x"

5
2

x2

4
y2

5
− = 1

FIGURE 11.45 The hyperbola and its 
asymptotes in Example 3.
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We shift conics using the principles reviewed in Section 1.2, replacing x by x + h and 
y by y + k.

EXAMPLE 4  Show that the equation x2 - 4y2 + 2x + 8y - 7 = 0 represents a 
hyperbola. Find its center, asymptotes, and foci.

Solution We reduce the equation to standard form by completing the square in x and y
as follows:

(x2 + 2x) - 4( y2 - 2y) = 7

(x2 + 2x + 1) - 4( y2 - 2y + 1) = 7 + 1 - 4

(x + 1)2

4
- ( y - 1)2 = 1.

This is the standard form Equation (10) of a hyperbola with x replaced by x + 1 and y
replaced by y - 1. The hyperbola is shifted one unit to the left and one unit upward, and it 
has center x + 1 = 0 and y - 1 = 0, or x = -1 and y = 1. Moreover,

a2 = 4, b2 = 1, c2 = a2 + b2 = 5,

so the asymptotes are the two lines

x + 1
2

- ( y - 1) = 0 and
x + 1

2
+ ( y - 1) = 0,

or

y - 1 = {
1
2

 (x + 1).

The shifted foci have coordinates 1-1 { 25, 12.

Identifying Graphs
Match the parabolas in Exercises 1–4 with the following equations:

x2 = 2y, x2 = -6y, y2 = 8x, y2 = -4x.

Then find each parabola’s focus and directrix.

1.

x

y 2.

x

y

3.

x

y 4.

x

y

Match each conic section in Exercises 5–8 with one of these equations:

x2

4
+

y2

9
= 1,

x2

2
+ y2 = 1, 

y2

4
- x2 = 1,

x2

4
-

y2

9
= 1.

Then find the conic section’s foci and vertices. If the conic section is a 
hyperbola, find its asymptotes as well.

5.

x

y 6.

x

y

Exercises 11.6
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7.   8.

x

y

x

y

Parabolas
Exercises 9–16 give equations of parabolas. Find each parabola’s 
focus and directrix. Then sketch the parabola. Include the focus and 
directrix in your sketch.

9. y2 = 12x 10. x2 = 6y 11. x2 = -8y

12. y2 = -2x 13. y = 4x2 14. y = -8x2

15. x = -3y2 16. x = 2y2

Ellipses
Exercises 17–24 give equations for ellipses. Put each equation in stan-
dard form. Then sketch the ellipse. Include the foci in your sketch.

17. 16x2 + 25y2 = 400 18. 7x2 + 16y2 = 112

19. 2x2 + y2 = 2 20. 2x2 + y2 = 4

21. 3x2 + 2y2 = 6 22. 9x2 + 10y2 = 90

23. 6x2 + 9y2 = 54 24. 169x2 + 25y2 = 4225

Exercises 25 and 26 give information about the foci and vertices of 
ellipses centered at the origin of the xy-plane. In each case, find the 
ellipse’s standard-form equation from the given information.

25. Foci: 1{22, 02 Vertices: ({2, 0)

26. Foci: (0, {4) Vertices: (0, {5)

Hyperbolas
Exercises 27–34 give equations for hyperbolas. Put each equation in 
standard form and find the hyperbola’s asymptotes. Then sketch the 
hyperbola. Include the asymptotes and foci in your sketch.

27. x2 - y2 = 1 28. 9x2 - 16y2 = 144

29. y2 - x2 = 8 30. y2 - x2 = 4

31. 8x2 - 2y2 = 16 32. y2 - 3x2 = 3

33. 8y2 - 2x2 = 16 34. 64x2 - 36y2 = 2304

Exercises 35–38 give information about the foci, vertices, and asymp-
totes of hyperbolas centered at the origin of the xy-plane. In each case, 
find the hyperbola’s standard-form equation from the information given.

Shifting Conic Sections
You may wish to review Section 1.2 before solving Exercises 39–56.

39. The parabola y2 = 8x is shifted down 2 units and right 1 unit to 
generate the parabola ( y + 2)2 = 8(x - 1).

  a. Find the new parabola’s vertex, focus, and directrix.

  b. Plot the new vertex, focus, and directrix, and sketch in the 
parabola.

40. The parabola x2 = -4y is shifted left 1 unit and up 3 units to 
generate the parabola (x + 1)2 = -4(y - 3).

a. Find the new parabola’s vertex, focus, and directrix.

b. Plot the new vertex, focus, and directrix, and sketch in the 
parabola.

41. The ellipse (x2>16) + (y2>9) = 1 is shifted 4 units to the right 
and 3 units up to generate the ellipse

(x - 4)2

16
+

(y - 3)2

9
= 1.

  a. Find the foci, vertices, and center of the new ellipse.

  b. Plot the new foci, vertices, and center, and sketch in the new 
ellipse.

42. The ellipse (x2>9) + (y2>25) = 1 is shifted 3 units to the left 
and 2 units down to generate the ellipse

(x + 3)2

9
+

( y + 2)2

25
= 1.

  a. Find the foci, vertices, and center of the new ellipse.

  b. Plot the new foci, vertices, and center, and sketch in the new 
ellipse.

43. The hyperbola (x2>16) - (y2>9) = 1 is shifted 2 units to the 
right to generate the hyperbola

(x - 2)2

16
-

y2

9
= 1.

  a. Find the center, foci, vertices, and asymptotes of the new 
hyperbola.

  b. Plot the new center, foci, vertices, and asymptotes, and sketch 
in the hyperbola.

44. The hyperbola (y2>4) - (x2>5) = 1 is shifted 2 units down to 
generate the hyperbola

( y + 2)2

4
- x2

5
= 1.

  a. Find the center, foci, vertices, and asymptotes of the new 
hyperbola.

  b. Plot the new center, foci, vertices, and asymptotes, and sketch 
in the hyperbola.

Exercises 45–48 give equations for parabolas and tell how many units 
up or down and to the right or left each parabola is to be shifted. Find 
an equation for the new parabola, and find the new vertex, focus, and 
directrix.

45. y2 = 4x, left 2, down 3 46. y2 = -12x, right 4, up 3

47. x2 = 8y, right 1, down 7 48. x2 = 6y, left 3, down 2

35. Foci: 10, {222
  Asymptotes: y = {x

36. Foci: ({2, 0)

  Asymptotes: y = {
1

23
x

37. Vertices: ({3, 0)

  Asymptotes: y = {
4
3

x

38. Vertices: (0, {2)

  Asymptotes: y = {
1
2

x
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Exercises 49–52 give equations for ellipses and tell how many units up 
or down and to the right or left each ellipse is to be shifted. Find an 
equation for the new ellipse, and find the new foci, vertices, and center.

49.
x2

6
+

y2

9
= 1, left 2, down 1

50.
x2

2
+ y2 = 1, right 3, up 4

51.
x2

3
+

y2

2
= 1, right 2, up 3

52.
x2

16
+

y2

25
= 1, left 4, down 5

Exercises 53–56 give equations for hyperbolas and tell how many 
units up or down and to the right or left each hyperbola is to be 
shifted. Find an equation for the new hyperbola, and find the new cen-
ter, foci, vertices, and asymptotes.

53.
x2

4
-

y2

5
= 1, right 2, up 2

54.
x2

16
-

y2

9
= 1, left 2, down 1

55. y2 - x2 = 1, left 1, down 1

56.
y2

3
- x2 = 1, right 1, up 3

Find the center, foci, vertices, asymptotes, and radius, as appropriate, 
of the conic sections in Exercises 57–68.

57. x2 + 4x + y2 = 12

58. 2x2 + 2y2 - 28x + 12y + 114 = 0

59. x2 + 2x + 4y - 3 = 0 60. y2 - 4y - 8x - 12 = 0

61. x2 + 5y2 + 4x = 1 62. 9x2 + 6y2 + 36y = 0

63. x2 + 2y2 - 2x - 4y = -1

64. 4x2 + y2 + 8x - 2y = -1

65. x2 - y2 - 2x + 4y = 4 66. x2 - y2 + 4x - 6y = 6

67. 2x2 - y2 + 6y = 3 68. y2 - 4x2 + 16x = 24

Theory and Examples
69. If lines are drawn parallel to the coordinate axes through a point P

on the parabola y2 = kx, k 7 0, the parabola partitions the rect-
angular region bounded by these lines and the coordinate axes 
into two smaller regions, A and B.

  a. If the two smaller regions are revolved about the y-axis, show 
that they generate solids whose volumes have the ratio 4:1.

b. What is the ratio of the volumes generated by revolving the 
regions about the x-axis?

0
x

y

A

B

P

y2 = kx

70. Suspension bridge cables hang in parabolas The suspension 
bridge cable shown in the accompanying figure supports a uni-
form load of w pounds per horizontal foot. It can be shown that 
if H is the horizontal tension of the cable at the origin, then the 
curve of the cable satisfies the equation

dy
dx

= w
H

x.

  Show that the cable hangs in a parabola by solving this differential 
equation subject to the initial condition that y = 0 when x = 0.

x

y

Bridge cable

0

71. The width of a parabola at the focus Show that the number 
4p is the width of the parabola x2 = 4py (p 7 0) at the focus by 
showing that the line y = p cuts the parabola at points that are 
4p units apart.

72. The asymptotes of (x2
,a2) − ( y2

,b2) = 1 Show that the 
vertical distance between the line y = (b>a)x and the upper half 
of the right-hand branch y = (b>a)2x2 - a2 of the hyperbola 
(x2>a2) - (y2>b2) = 1 approaches 0 by showing that

lim
xSq
aba x - b

a2x2 - a2b = b
a lim

xSq
1x - 2x2 - a22 = 0.

  Similar results hold for the remaining portions of the hyperbola 
and the lines y = {(b>a)x.

73. Area Find the dimensions of the rectangle of largest area that 
can be inscribed in the ellipse x2 + 4y2 = 4 with its sides paral-
lel to the coordinate axes. What is the area of the rectangle?

74. Volume Find the volume of the solid generated by revolving 
the region enclosed by the ellipse 9x2 + 4y2 = 36 about the 
(a) x-axis, (b) y-axis.

75. Volume The “triangular” region in the first quadrant bounded 
by the x-axis, the line x = 4, and the hyperbola 9x2 - 4y2 = 36
is revolved about the x-axis to generate a solid. Find the volume 
of the solid.

76. Tangents Show that the tangents to the curve y2 = 4px from 
any point on the line x = -p are perpendicular.

77. Tangents Find equations for the tangents to the circle 
(x - 2)2 + ( y - 1)2 = 5 at the points where the circle crosses 
the coordinate axes.

78. Volume The region bounded on the left by the y-axis, on the 
right by the hyperbola x2 - y2 = 1, and above and below by 
the lines y = {3 is revolved about the y-axis to generate a 
solid. Find the volume of the solid.

79. Centroid Find the centroid of the region that is bounded below 
by the x-axis and above by the ellipse (x2>9) + (y2>16) = 1.

80. Surface area The curve y = 2x2 + 1, 0 … x … 22, which 
is part of the upper branch of the hyperbola y2 - x2 = 1, is 
revolved about the x-axis to generate a surface. Find the area of 
the surface.
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81. The reflective property of parabolas The accompanying fig-
ure shows a typical point P(x0, y0) on the parabola y2 = 4px. The 
line L is tangent to the parabola at P. The parabola’s focus lies at 
F( p, 0). The ray L′ extending from P to the right is parallel to the 
x-axis. We show that light from F to P will be reflected out along 
L′ by showing that b equals a. Establish this equality by taking 
the following steps.

  a. Show that tan b = 2p>y0 .

  b. Show that tan f = y0>(x0 - p).

  c. Use the identity

tan a =
tan f - tan b

1 + tan f tan b

   to show that tan a = 2p>y0.

  Since a and b are both acute, tan b = tan a implies b = a.

This reflective property of parabolas is used in applications like 
car headlights, radio telescopes, and satellite TV dishes.

x

y

0 F( p, 0)

P(x0, y0)

f

a

b

b

L

L′

y0

y2 = 4px

11.7 Conics in Polar Coordinates

Polar coordinates are especially important in astronomy and astronautical engineering 
because satellites, moons, planets, and comets all move approximately along ellipses, 
parabolas, and hyperbolas that can be described with a single relatively simple polar coor-
dinate equation. We develop that equation here after first introducing the idea of a conic 
section’s eccentricity. The eccentricity reveals the conic section’s type (circle, ellipse, 
parabola, or hyperbola) and the degree to which it is “squashed” or flattened.

Eccentricity

Although the center-to-focus distance c does not appear in the standard Cartesian equation

x2

a2 +
y2

b2 = 1, (a 7 b)

for an ellipse, we can still determine c from the equation c = 2a2 - b2. If we fix a and vary 
c over the interval 0 … c … a, the resulting ellipses will vary in shape. They are circles if 
c = 0 (so that a = b) and flatten, becoming more oblong, as c increases. If c = a, the foci 
and vertices overlap and the ellipse degenerates into a line segment. Thus we are led to con-
sider the ratio e = c>a. We use this ratio for hyperbolas as well, except in this case c equals 
2a2 + b2 instead of 2a2 - b2. We define these ratios with the term eccentricity.

DEFINITION

The eccentricity of the ellipse (x2>a2) + (y2>b2) = 1 (a 7 b) is

e = c
a = 2a2 - b2

a .

The eccentricity of the hyperbola (x2>a2) - (y2>b2) = 1 is

e = c
a = 2a2 + b2

a .

The eccentricity of a parabola is e = 1.



11.7  Conics in Polar Coordinates 693

Whereas a parabola has one focus and one directrix, each ellipse has two foci and two 
directrices. These are the lines perpendicular to the major axis at distances {a>e from 
the center. From Figure 11.46 we see that a parabola has the property

PF = 1 # PD (1)

for any point P on it, where F is the focus and D is the point nearest P on the directrix. For 
an ellipse, it can be shown that the equations that replace Equation (1) are

PF1 = e # PD1, PF2 = e # PD2 . (2)

Here, e is the eccentricity, P is any point on the ellipse, F1 and F2 are the foci, and D1 and 
D2 are the points on the directrices nearest P (Figure 11.47).

In both Equations (2) the directrix and focus must correspond; that is, if we use the 
distance from P to F1, we must also use the distance from P to the directrix at the same 
end of the ellipse. The directrix x = -a>e corresponds to F1(-c, 0), and the directrix 
x = a>e corresponds to F2(c, 0).

As with the ellipse, it can be shown that the lines x = {a>e act as directrices for the 
hyperbola and that

PF1 = e # PD1 and PF2 = e # PD2 . (3)

Here P is any point on the hyperbola, F1 and F2 are the foci, and D1 and D2 are the points 
nearest P on the directrices (Figure 11.48).

In both the ellipse and the hyperbola, the eccentricity is the ratio of the distance 
between the foci to the distance between the vertices (because c>a = 2c>2a).

0 F(c, 0)

D P(x, y)

x

y
Directrix

x = −c

FIGURE 11.46 The distance from the 
focus F to any point P on a parabola equals 
the distance from P to the nearest point D
on the directrix, so PF = PD.

Eccentricity = distance between foci
distance between vertices

PF = e # PD, (4)

In an ellipse, the foci are closer together than the vertices and the ratio is less than 1. In a 
hyperbola, the foci are farther apart than the vertices and the ratio is greater than 1.

The “focus–directrix” equation PF = e # PD unites the parabola, ellipse, and hyper-
bola in the following way. Suppose that the distance PF of a point P from a fixed point F
(the focus) is a constant multiple of its distance from a fixed line (the directrix). That is, 
suppose

where e is the constant of proportionality. Then the path traced by P is

(a) a parabola if e = 1,

(b) an ellipse of eccentricity e if e 6 1, and

(c) a hyperbola of eccentricity e if e 7 1.

As e increases (e S 1-), ellipses become more oblong, and (e S q) hyperbolas flatten 
toward two lines parallel to the directrix. There are no coordinates in Equation (4), and 
when we try to translate it into Cartesian coordinate form, it translates in different ways 
depending on the size of e. However, as we are about to see, in polar coordinates the equa-
tion PF = e # PD translates into a single equation regardless of the value of e.

Given the focus and corresponding directrix of a hyperbola centered at the origin and 
with foci on the x-axis, we can use the dimensions shown in Figure 11.48 to find e.

x

y
Directrix 1
x = −

a
e

Directrix 2
x = a

eb

−b

0

a
c = ae

a
e

D1 D2
P(x, y)

F1(−c, 0) F2(c, 0)

FIGURE 11.47 The foci and directrices 
of the ellipse (x2>a2) + (y2>b2) = 1.
Directrix 1 corresponds to focus F1 and 
directrix 2 to focus F2.

Directrix 1
x = − a

e

Directrix 2
x = a

e

a

c = ae

a
e

F1(−c, 0) F2(c, 0)

D2D1
P(x, y)

x

y

0

FIGURE 11.48 The foci and directrices 
of the hyperbola (x2>a2) - ( y2>b2) = 1.
No matter where P lies on the hyperbola, 
PF1 = e # PD1 and PF2 = e # PD2.
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Knowing e, we can derive a Cartesian equation for the hyperbola from the equation 
PF = e # PD, as in the next example. We can find equations for ellipses centered at the ori-
gin and with foci on the x-axis in a similar way, using the dimensions shown in Figure 11.47.

EXAMPLE 1  Find a Cartesian equation for the hyperbola centered at the origin that 
has a focus at (3, 0) and the line x = 1 as the corresponding directrix.

Solution We first use the dimensions shown in Figure 11.48 to find the hyperbola’s 
eccentricity. The focus is (see Figure 11.49)

(c, 0) = (3, 0), so c = 3.

Again from Figure 11.48, the directrix is the line

x = a
e = 1, so a = e.

When combined with the equation e = c>a that defines eccentricity, these results give

e = c
a = 3

e , so e2 = 3 and e = 23.

Knowing e, we can now derive the equation we want from the equation PF = e # PD.
In the coordinates of Figure 11.49, we have

PF = e # PD Eq. (4)

2(x - 3)2 + (y - 0)2 = 23 � x - 1 � e = 23

x2 - 6x + 9 + y2 = 3(x2 - 2x + 1) Square both sides.

2x2 - y2 = 6

x2

3 -
y2

6
= 1.

Polar Equations

To find a polar equation for an ellipse, parabola, or hyperbola, we place one focus at the 
origin and the corresponding directrix to the right of the origin along the vertical line 
x = k (Figure 11.50). In polar coordinates, this makes

PF = r
and

PD = k - FB = k - r cos u.

The conic’s focus–directrix equation PF = e # PD then becomes

r = e(k - r cos u),

which can be solved for r to obtain the following expression.

0 1 F(3, 0)

D(1, y)

P(x, y)

x

x = 1

y

x2

3
y2

6
− = 1

FIGURE 11.49 The hyperbola and 
directrix in Example 1.

Polar Equation for a Conic with Eccentricity e

r = ke
1 + e cos u

, (5)

where x = k 7 0 is the vertical directrix.

Conic section

P

F B

r

r cos u

Focus at
origin

D

x
k

x = k

Directrix

FIGURE 11.50 If a conic section is put 
in the position with its focus placed at the 
origin and a directrix perpendicular to the 
initial ray and right of the origin, we can 
find its polar equation from the conic’s 
focus–directrix equation.
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EXAMPLE 2  Here are polar equations for three conics. The eccentricity values iden-
tifying the conic are the same for both polar and Cartesian coordinates.

e = 1
2

: ellipse r = k
2 + cos u

e = 1 : parabola r = k
1 + cos u

e = 2 : hyperbola r = 2k
1 + 2 cos u

Focus at origin

Directrix x = k

r = ke
1 + e cos u

x
Focus at origin

Directrix x = −k

r = ke
1 − e cos u

x

Directrix y = k

r = ke
1 + e sin u

y

Focus at
origin

Directrix y = −k

r = ke
1 − e sin u

y
Focus at origin

(a) (b)

(c) (d)

FIGURE 11.51 Equations for conic sections with 
eccentricity e 7 0 but different locations of the directrix. 
The graphs here show a parabola, so e = 1.

EXAMPLE 3  Find an equation for the hyperbola with eccentricity 3 >2 and directrix 
x = 2.

Solution We use Equation (5) with k = 2 and e = 3>2:

r =
2(3>2)

1 + (3>2) cos u
or r = 6

2 + 3 cos u
.

You may see variations of Equation (5), depending on the location of the directrix. If 
the directrix is the line x = -k to the left of the origin (the origin is still a focus), we 
replace Equation (5) with

r = ke
1 - e cos u

.

The denominator now has a (-) instead of a (+). If the directrix is either of the lines y = k or 
y = -k, the equations have sines in them instead of cosines, as shown in Figure 11.51.

EXAMPLE 4  Find the directrix of the parabola

r = 25
10 + 10 cos u

.
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Solution We divide the numerator and denominator by 10 to put the equation in stan-
dard polar form:

r =
5>2

1 + cos u
.

This is the equation

r = ke
1 + e cos u

with k = 5>2 and e = 1. The equation of the directrix is x = 5>2.

From the ellipse diagram in Figure 11.52, we see that k is related to the eccentricity e
and the semimajor axis a by the equation

k = a
e - ea.

From this, we find that ke = a(1 - e2). Replacing ke in Equation (5) by a(1 - e2) gives 
the standard polar equation for an ellipse.

Center
Focus at
origin

ea

a

a
e

x

Directrix
x = k

FIGURE 11.52 In an ellipse with
semimajor axis a, the focus–directrix 
distance is k = (a>e) - ea, so 
ke = a(1 - e2).

Polar Equation for the Ellipse with Eccentricity e and Semimajor Axis a

r =
a(1 - e2)

1 + e cos u
(6)

Notice that when e = 0, Equation (6) becomes r = a, which represents a circle.

Lines

Suppose the perpendicular from the origin to line L meets L at the point P0(r0, u0), with 
r0 Ú 0 (Figure 11.53). Then, if P(r, u) is any other point on L, the points P, P0, and O are 
the vertices of a right triangle, from which we can read the relation

r0 = r cos (u - u0).

The Standard Polar Equation for Lines

If the point P0(r0, u0) is the foot of the perpendicular from the origin to the line L,
and r0 Ú 0, then an equation for L is

r cos (u - u0) = r0. (7)

For example, if u0 = p>3 and r0 = 2, we find that

r cos au - p3 b = 2

r acos ucos 
p
3 + sin u sin 

p
3 b = 2

1
2

r cos u + 23
2

r sin u = 2, or x + 23 y = 4.

x

y

O

u0

r0

u

r

L

P(r, u)

P0(r0 , u0)

FIGURE 11.53 We can obtain a polar 
equation for line L by reading the relation 
r0 = r cos (u - u0) from the right triangle 
OP0P.
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Circles

To find a polar equation for the circle of radius a centered at P0(r0, u0), we let P(r, u) be a 
point on the circle and apply the Law of Cosines to triangle OP0P (Figure 11.54). This 
gives

a2 = r0
2 + r2 - 2r0r cos (u - u0).

If the circle passes through the origin, then r0 = a and this equation simplifies to

a2 = a2 + r2 - 2ar cos (u - u0)
r2 = 2ar cos (u - u0)
r = 2a cos (u - u0).

If the circle’s center lies on the positive x-axis, u0 = 0 and we get the further simplifica-
tion

r = 2a cos u. (8)

If the center lies on the positive y-axis, u = p>2, cos (u - p>2) = sin u, and the 
equation r = 2a cos (u - u0) becomes

r = 2a sin u. (9)

Equations for circles through the origin centered on the negative x- and y-axes can be 
obtained by replacing r with -r in the above equations.

EXAMPLE 5  Here are several polar equations given by Equations (8) and (9) for cir-
cles through the origin and having centers that lie on the x- or y-axis.

O
x

y

u0

r0
u

r

a

P(r, u)

P0(r0 , u0)

FIGURE 11.54 We can get a polar 
equation for this circle by applying the 
Law of Cosines to triangle OP0P.

Center Polar
Radius (polar coordinates) equation

3 (3, 0) r = 6 cos u

2 (2, p>2) r = 4 sin u

1 >2 (-1>2, 0) r = -cos u

1 (-1, p>2) r = -2 sin u

Ellipses and Eccentricity
In Exercises 1–8, find the eccentricity of the ellipse. Then find and 
graph the ellipse’s foci and directrices.

1. 16x2 + 25y2 = 400 2. 7x2 + 16y2 = 112

3. 2x2 + y2 = 2 4. 2x2 + y2 = 4

5. 3x2 + 2y2 = 6 6. 9x2 + 10y2 = 90

7. 6x2 + 9y2 = 54 8. 169x2 + 25y2 = 4225

Exercises 9–12 give the foci or vertices and the eccentricities of 
ellipses centered at the origin of the xy-plane. In each case, find the 
ellipse’s standard-form equation in Cartesian coordinates.

11. Vertices: (0, {70)

Eccentricity: 0.1

12. Vertices: ({10, 0)

Eccentricity: 0.24

Exercises 11.7

9. Foci: (0, {3)

Eccentricity: 0.5

10. Foci: ({8, 0)

Eccentricity: 0.2

Exercises 13–16 give foci and corresponding directrices of ellipses 
centered at the origin of the xy-plane. In each case, use the dimensions 
in Figure 11.47 to find the eccentricity of the ellipse. Then find the 
ellipse’s standard-form equation in Cartesian coordinates.

13. Focus: 125, 02
  Directrix: x = 9

25

14. Focus: (4, 0)

  Directrix: x = 16
3

15. Focus: (-4, 0)

  Directrix: x = -16

16. Focus: 1-22, 02
  Directrix: x = -222



698 Chapter 11: Parametric Equations and Polar Coordinates

Hyperbolas and Eccentricity
In Exercises 17–24, find the eccentricity of the hyperbola. Then find 
and graph the hyperbola’s foci and directrices.

17. x2 - y2 = 1 18. 9x2 - 16y2 = 144

19. y2 - x2 = 8 20. y2 - x2 = 4

21. 8x2 - 2y2 = 16 22. y2 - 3x2 = 3

23. 8y2 - 2x2 = 16 24. 64x2 - 36y2 = 2304

Exercises 25–28 give the eccentricities and the vertices or foci of 
hyperbolas centered at the origin of the xy-plane. In each case, find the 
hyperbola’s standard-form equation in Cartesian coordinates.

25. Eccentricity: 3

  Vertices: (0, {1)

26. Eccentricity: 2

  Vertices: ({2, 0)

27. Eccentricity: 3

  Foci: ({3, 0)

28. Eccentricity: 1.25

  Foci: (0, {5)

Eccentricities and Directrices
Exercises 29–36 give the eccentricities of conic sections with one 
focus at the origin along with the directrix corresponding to that focus. 
Find a polar equation for each conic section.

29. e = 1, x = 2 30. e = 1, y = 2

31. e = 5, y = -6 32. e = 2, x = 4

33. e = 1>2, x = 1 34. e = 1>4, x = -2

35. e = 1>5, y = -10 36. e = 1>3, y = 6

Parabolas and Ellipses
Sketch the parabolas and ellipses in Exercises 37–44. Include the direc-
trix that corresponds to the focus at the origin. Label the vertices with 
appropriate polar coordinates. Label the centers of the ellipses as well.

37. r = 1
1 + cos u

38. r = 6
2 + cos u

39. r = 25
10 - 5 cos u

40. r = 4
2 - 2 cos u

41. r = 400
16 + 8 sin u

42. r = 12
3 + 3 sin u

43. r = 8
2 - 2 sin u

44. r = 4
2 - sin u

Lines
Sketch the lines in Exercises 45–48 and find Cartesian equations for 
them.

45. r cos au - p
4
b = 22 46. r cos au + 3p

4
b = 1

47. r cos au - 2p
3
b = 3 48. r cos au + p

3
b = 2

Find a polar equation in the form r cos (u - u0) = r0 for each of the 
lines in Exercises 49–52.

49. 22 x + 22 y = 6 50. 23 x - y = 1

51. y = -5 52. x = -4

Circles
Sketch the circles in Exercises 53–56. Give polar coordinates for their 
centers and identify their radii.

53. r = 4 cos u 54. r = 6 sin u

55. r = -2 cos u 56. r = -8 sin u

Find polar equations for the circles in Exercises 57–64. Sketch each 
circle in the coordinate plane and label it with both its Cartesian and 
polar equations.

57. (x - 6)2 + y2 = 36 58. (x + 2)2 + y2 = 4

59. x2 + (y - 5)2 = 25 60. x2 + (y + 7)2 = 49

61. x2 + 2x + y2 = 0 62. x2 - 16x + y2 = 0

63. x2 + y2 + y = 0 64. x2 + y2 - 4
3

y = 0

Examples of Polar Equations
Graph the lines and conic sections in Exercises 65–74.

65. r = 3 sec (u - p>3) 66. r = 4 sec (u + p>6)

67. r = 4 sin u 68. r = -2 cos u

69. r = 8>(4 + cos u) 70. r = 8>(4 + sin u)

71. r = 1>(1 - sin u) 72. r = 1>(1 + cos u)

73. r = 1>(1 + 2 sin u) 74. r = 1>(1 + 2 cos u)

75. Perihelion and aphelion A planet travels about its sun in an 
ellipse whose semimajor axis has length a. (See accompanying 
figure.)

  a. Show that r = a(1 - e) when the planet is closest to the sun 
and that r = a(1 + e) when the planet is farthest from the sun.

  b. Use the data in the table in Exercise 76 to find how close each 
planet in our solar system comes to the sun and how far away 
each planet gets from the sun.

Aphelion
(farthest
from sun)

Perihelion
(closest
to sun)

Planet

Sun

u
a

76. Planetary orbits Use the data in the table below and Equation 
(6) to find polar equations for the orbits of the planets.

Semimajor axis
Planet (astronomical units) Eccentricity

Mercury 0.3871 0.2056
Venus 0.7233 0.0068
Earth 1.000 0.0167
Mars 1.524 0.0934
Jupiter 5.203 0.0484
Saturn 9.539 0.0543
Uranus 19.18 0.0460
Neptune 30.06 0.0082

T
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Chapter 11 Questions to Guide Your Review

1. What is a parametrization of a curve in the xy-plane? Does a func-
tion y = ƒ(x) always have a parametrization? Are parametriza-
tions of a curve unique? Give examples.

2. Give some typical parametrizations for lines, circles, parabolas, 
ellipses, and hyperbolas. How might the parametrized curve dif-
fer from the graph of its Cartesian equation?

3. What is a cycloid? What are typical parametric equations for 
cycloids? What physical properties account for the importance of 
cycloids?

4. What is the formula for the slope dy>dx of a parametrized curve 
x = ƒ(t), y = g(t)? When does the formula apply? When can you 
expect to be able to find d2y>dx2 as well? Give examples.

5. How can you sometimes find the area bounded by a parametrized 
curve and one of the coordinate axes?

6. How do you find the length of a smooth parametrized curve 
x = ƒ(t), y = g(t), a … t … b? What does smoothness have to 
do with length? What else do you need to know about the  param-
etrization in order to find the curve’s length? Give examples.

7. What is the arc length function for a smooth parametrized curve? 
What is its arc length differential?

8. Under what conditions can you find the area of the surface gener-
ated by revolving a curve x = ƒ(t), y = g(t), a … t … b, about 
the x-axis? the y-axis? Give examples.

9. What are polar coordinates? What equations relate polar coordi-
nates to Cartesian coordinates? Why might you want to change 
from one coordinate system to the other?

10. What consequence does the lack of uniqueness of polar coordi-
nates have for graphing? Give an example.

11. How do you graph equations in polar coordinates? Include in 
your discussion symmetry, slope, behavior at the origin, and the 
use of Cartesian graphs. Give examples.

12. How do you find the area of a region 0 … r1(u) … r … r2(u),
a … u … b, in the polar coordinate plane? Give examples.

13. Under what conditions can you find the length of a curve 
r = ƒ(u), a … u … b, in the polar coordinate plane? Give an 
example of a typical calculation.

14. What is a parabola? What are the Cartesian equations for parabo-
las whose vertices lie at the origin and whose foci lie on the coor-
dinate axes? How can you find the focus and directrix of such a 
parabola from its equation?

15. What is an ellipse? What are the Cartesian equations for ellipses 
centered at the origin with foci on one of the coordinate axes? 
How can you find the foci, vertices, and directrices of such an 
ellipse from its equation?

16. What is a hyperbola? What are the Cartesian equations for hyper-
bolas centered at the origin with foci on one of the coordinate 
axes? How can you find the foci, vertices, and directrices of such 
an ellipse from its equation?

17. What is the eccentricity of a conic section? How can you classify 
conic sections by eccentricity? How does eccentricity change the 
shape of ellipses and hyperbolas?

18. Explain the equation PF = e # PD.

19. What are the standard equations for lines and conic sections in 
polar coordinates? Give examples.

Chapter 11 Practice Exercises

Identifying Parametric Equations in the Plane
Exercises 1–6 give parametric equations and parameter intervals for 
the motion of a particle in the xy-plane. Identify the particle’s path by 
finding a Cartesian equation for it. Graph the Cartesian equation and 
indicate the direction of motion and the portion traced by the particle.

1. x = t>2, y = t + 1; -q 6 t 6 q
2. x = 2t, y = 1 - 2t; t Ú 0

3. x = (1>2) tan t, y = (1>2) sec t; -p>2 6 t 6 p>2
4. x = -2 cos t, y = 2 sin t; 0 … t … p
5. x = -cos t, y = cos2 t; 0 … t … p
6. x = 4 cos t, y = 9 sin t; 0 … t … 2p

Finding Parametric Equations and Tangent Lines
7. Find parametric equations and a parameter interval for the 

motion of a particle in the xy-plane that traces the ellipse 
16x2 + 9y2 = 144 once counterclockwise. (There are many ways 
to do this.)

8. Find parametric equations and a parameter interval for the motion 
of a particle that starts at the point (-2, 0) in the xy-plane and traces 
the circle x2 + y2 = 4 three times clockwise. (There are many 
ways to do this.)

In Exercises 9 and 10, find an equation for the line in the xy-plane that is 
tangent to the curve at the point corresponding to the given value of t.
Also, find the value of d2y>dx2 at this point.

9. x = (1>2) tan t, y = (1>2) sec t; t = p>3
10. x = 1 + 1>t2, y = 1 - 3>t; t = 2

11. Eliminate the parameter to express the curve in the form y = ƒ(x) .

  a. x = 4t2, y = t3 - 1

  b. x = cos t, y = tan t

12. Find parametric equations for the given curve.

  a. Line through (1, -2) with slope 3

  b. (x - 1)2 + ( y + 2)2 = 9

  c. y = 4x2 - x

d. 9x2 + 4y2 = 36
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Lengths of Curves
Find the lengths of the curves in Exercises 13–19.

13. y = x1>2 - (1>3)x3>2, 1 … x … 4

14. x = y2>3, 1 … y … 8

15. y = (5>12)x6>5 - (5>8)x4>5, 1 … x … 32

16. x = (y3>12) + (1>y), 1 … y … 2

17. x = 5 cos t - cos 5t, y = 5 sin t - sin 5t, 0 … t … p>2
18. x = t3 - 6t2, y = t3 + 6t2, 0 … t … 1

19. x = 3 cos u, y = 3 sin u, 0 … u … 3p
2

20. Find the length of the enclosed loop x = t2, y = (t3>3) - t

  shown here. The loop starts at t = -23 and ends at t = 23.

y

0

1

1

−1

2 4
x

t = ±
"

3t = 0

t > 0

t < 0

Surface Areas
Find the areas of the surfaces generated by revolving the curves in 
Exercises 21 and 22 about the indicated axes.

21. x = t2>2, y = 2t, 0 … t … 25; x-axis

22. x = t2 + 1>(2t), y = 42t, 1>22 … t … 1; y-axis

Polar to Cartesian Equations
Sketch the lines in Exercises 23–28. Also, find a Cartesian equation 
for each line.

23. r cos au + p
3
b = 223 24. r cos au - 3p

4
b = 22

2

25. r = 2 sec u 26. r = -22 sec u

27. r = - (3>2) csc u 28. r = 13232 csc u

Find Cartesian equations for the circles in Exercises 29–32. Sketch 
each circle in the coordinate plane and label it with both its Cartesian 
and polar equations.

29. r = -4 sin u 30. r = 323 sin u

31. r = 222 cos u 32. r = -6 cos u

Cartesian to Polar Equations
Find polar equations for the circles in Exercises 33–36. Sketch each 
circle in the coordinate plane and label it with both its Cartesian and 
polar equations.

33. x2 + y2 + 5y = 0 34. x2 + y2 - 2y = 0

35. x2 + y2 - 3x = 0 36. x2 + y2 + 4x = 0

Graphs in Polar Coordinates
Sketch the regions defined by the polar coordinate inequalities in 
Exercises 37 and 38.

37. 0 … r … 6 cos u 38. -4 sin u … r … 0

Match each graph in Exercises 39–46 with the appropriate equation 
(a)–(l). There are more equations than graphs, so some equations will 
not be matched.

  a. r = cos 2u b. r cos u = 1 c. r = 6
1 - 2 cos u

  d. r = sin 2u e. r = u f. r2 = cos 2u

  g. r = 1 + cos u h. r = 1 - sin u i. r = 2
1 - cos u

  j. r2 = sin 2u k. r = -sin u l. r = 2 cos u + 1

39. Four-leaved rose 40. Spiral

x

y

x

y

41. Limaçon 42. Lemniscate

x

y

x

y

43. Circle 44. Cardioid

x

y

x

y

45. Parabola 46. Lemniscate

x

y

x

y

Area in Polar Coordinates
Find the areas of the regions in the polar coordinate plane described in 
Exercises 47–50.

47. Enclosed by the limaçon r = 2 - cos u

48. Enclosed by one leaf of the three-leaved rose r = sin 3u

49. Inside the “figure eight” r = 1 + cos 2u and outside the circle 
r = 1

50. Inside the cardioid r = 2(1 + sin u) and outside the circle 
r = 2 sin u
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Length in Polar Coordinates
Find the lengths of the curves given by the polar coordinate equations 
in Exercises 51–54.

51. r = -1 + cos u

52. r = 2 sin u + 2 cos u, 0 … u … p>2
53. r = 8 sin3(u>3), 0 … u … p>4
54. r = 21 + cos 2u, -p>2 … u … p>2
Graphing Conic Sections
Sketch the parabolas in Exercises 55–58. Include the focus and direc-
trix in each sketch.

55. x2 = -4y 56. x2 = 2y

57. y2 = 3x 58. y2 = - (8>3)x

Find the eccentricities of the ellipses and hyperbolas in Exercises 
59–62. Sketch each conic section. Include the foci, vertices, and 
asymptotes (as appropriate) in your sketch.

59. 16x2 + 7y2 = 112 60. x2 + 2y2 = 4

61. 3x2 - y2 = 3 62. 5y2 - 4x2 = 20

Exercises 63–68 give equations for conic sections and tell how many 
units up or down and to the right or left each curve is to be shifted. 
Find an equation for the new conic section, and find the new foci, 
vertices, centers, and asymptotes, as appropriate. If the curve is a 
parabola, find the new directrix as well.

63. x2 = -12y, right 2, up 3 64. y2 = 10x, left 1>2, down 1

65.
x2

9
+

y2

25
= 1, left 3, down 5

66.
x2

169
+

y2

144
= 1, right 5, up 12

67.
y2

8
- x2

2
= 1, right 2, up 222

68.
x2

36
-

y2

64
= 1, left 10, down 3

Identifying Conic Sections
Complete the squares to identify the conic sections in Exercises 69–76. 
Find their foci, vertices, centers, and asymptotes (as appropriate). If the 
curve is a parabola, find its directrix as well.

69. x2 - 4x - 4y2 = 0 70. 4x2 - y2 + 4y = 8

71. y2 - 2y + 16x = -49 72. x2 - 2x + 8y = -17

73. 9x2 + 16y2 + 54x - 64y = -1

74. 25x2 + 9y2 - 100x + 54y = 44

75. x2 + y2 - 2x - 2y = 0 76. x2 + y2 + 4x + 2y = 1

Conics in Polar Coordinates
Sketch the conic sections whose polar coordinate equations are given 
in Exercises 77–80. Give polar coordinates for the vertices and, in the 
case of ellipses, for the centers as well.

77. r = 2
1 + cos u

78. r = 8
2 + cos u

79. r = 6
1 - 2 cos u

80. r = 12
3 + sin u

Exercises 81–84 give the eccentricities of conic sections with one 
focus at the origin of the polar coordinate plane, along with the direc-
trix for that focus. Find a polar equation for each conic section.

81. e = 2, r cos u = 2

82. e = 1, r cos u = -4

83. e = 1>2, r sin u = 2

84. e = 1>3, r sin u = -6

Theory and Examples
85. Find the volume of the solid generated by revolving the region 

enclosed by the ellipse 9x2 + 4y2 = 36 about (a) the x-axis,
(b) the y-axis.

86. The “triangular” region in the first quadrant bounded by the 
x-axis, the line x = 4, and the hyperbola 9x2 - 4y2 = 36 is 
revolved about the x-axis to generate a solid. Find the volume of 
the solid.

87. Show that the equations x = r cos u, y = r sin u transform the 
polar equation

r = k
1 + e cos u

  into the Cartesian equation

(1 - e2)x2 + y2 + 2kex - k2 = 0.

88. Archimedes spirals The graph of an equation of the form 
r = au, where a is a nonzero constant, is called an Archimedes
spiral. Is there anything special about the widths between the suc-
cessive turns of such a spiral?

Chapter 11 Additional and Advanced Exercises

Finding Conic Sections
1. Find an equation for the parabola with focus (4, 0) and directrix 

x = 3. Sketch the parabola together with its vertex, focus, and 
directrix.

2. Find the vertex, focus, and directrix of the parabola

x2 - 6x - 12y + 9 = 0.

3. Find an equation for the curve traced by the point P(x, y) if the 
distance from P to the vertex of the parabola x2 = 4y is twice the 
distance from P to the focus. Identify the curve.

4. A line segment of length a + b runs from the x-axis to the y-axis.
The point P on the segment lies a units from one end and b units 
from the other end. Show that P traces an ellipse as the ends of 
the segment slide along the axes.

5. The vertices of an ellipse of eccentricity 0.5 lie at the points 
(0, {2). Where do the foci lie?

6. Find an equation for the ellipse of eccentricity 2 >3 that has the 
line x = 2 as a directrix and the point (4, 0) as the corresponding 
focus.
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7. One focus of a hyperbola lies at the point (0, -7) and the corre-
sponding directrix is the line y = -1. Find an equation for the 
hyperbola if its eccentricity is (a) 2, (b) 5.

8. Find an equation for the hyperbola with foci (0, -2) and (0, 2)
that passes through the point (12, 7).

9. Show that the line

b2xx1 + a2yy1 - a2b2 = 0

  is tangent to the ellipse b2x2 + a2y2 - a2b2 = 0 at the point 
(x1, y1) on the ellipse.

10. Show that the line

b2xx1 - a2yy1 - a2b2 = 0

  is tangent to the hyperbola b2x2 - a2y2 - a2b2 = 0 at the point 
(x1, y1) on the hyperbola.

Equations and Inequalities
What points in the xy-plane satisfy the equations and inequalities in 
Exercises 11–16? Draw a figure for each exercise.

11. (x2 - y2 - 1)(x2 + y2 - 25)(x2 + 4y2 - 4) = 0

12. (x + y)(x2 + y2 - 1) = 0

13. (x2>9) + ( y2>16) … 1

14. (x2>9) - ( y2>16) … 1

15. (9x2 + 4y2 - 36)(4x2 + 9y2 - 16) … 0

16. (9x2 + 4y2 - 36)(4x2 + 9y2 - 16) 7 0

Polar Coordinates
17. a. Find an equation in polar coordinates for the curve

x = e2t cos t, y = e2t sin t; -q 6 t 6 q.

  b. Find the length of the curve from t = 0 to t = 2p.

18. Find the length of the curve r = 2 sin3(u>3), 0 … u … 3p, in the 
polar coordinate plane.

Exercises 19–22 give the eccentricities of conic sections with one 
focus at the origin of the polar coordinate plane, along with the direc-
trix for that focus. Find a polar equation for each conic section.

19. e = 2, r cos u = 2 20. e = 1, r cos u = -4

21. e = 1>2, r sin u = 2 22. e = 1>3, r sin u = -6

Theory and Examples
23. Epicycloids When a circle rolls externally along the circumfer-

ence of a second, fixed circle, any point P on the circumference 
of the rolling circle describes an epicycloid, as shown here. Let 
the fixed circle have its center at the origin O and have radius a.

x

y

O

u

b
C

P

A(a, 0)

  Let the radius of the rolling circle be b and let the initial position 
of the tracing point P be A(a, 0). Find parametric equations for 
the epicycloid, using as the parameter the angle u from the posi-
tive x-axis to the line through the circles’ centers.

24. Find the centroid of the region enclosed by the x-axis and the 
cycloid arch

x = a(t - sin t), y = a(1 - cos t); 0 … t … 2p.

The Angle Between the Radius Vector and the Tangent Line to a 
Polar Coordinate Curve In Cartesian coordinates, when we want 
to discuss the direction of a curve at a point, we use the angle f mea-
sured counterclockwise from the positive x-axis to the tangent line. In 
polar coordinates, it is more convenient to calculate the angle c from 
the radius vector to the tangent line (see the accompanying figure). 
The angle f can then be calculated from the relation

f = u + c, (1)

which comes from applying the Exterior Angle Theorem to the trian-
gle in the accompanying figure.

x

y

0
u f

c

r

r = f (u)

P(r, u)

Suppose the equation of the curve is given in the form r = ƒ(u),
where ƒ(u) is a differentiable function of u. Then

x = r cos u and y = r sin u (2)

are differentiable functions of u with

dx
du

= -r sin u + cos u
dr
du

,

dy
du

= r cos u + sin u
dr
du

. (3)

Since c = f - u from (1),

tan c = tan (f - u) =
tan f - tan u

1 + tan f tan u
.

Furthermore,

tan f =
dy
dx

=
dy>du
dx>du

because tan f is the slope of the curve at P. Also,

tan u =
y
x .

Hence

tan c =

dy>du
dx>du -

y
x

1 +
y
x

dy>du
dx>du

=
x

dy
du

- y
dx
du

x
dx
du

+ y
dy
du

. (4)

The numerator in the last expression in Equation (4) is found from 
Equations (2) and (3) to be

x
dy
du

- y
dx
du

= r2.



Similarly, the denominator is

x
dx
du

+ y
dy
du

= r
dr
du

.

When we substitute these into Equation (4), we obtain

tan c = r
dr>du

. (5)

This is the equation we use for finding c as a function of u.

25. Show, by reference to a figure, that the angle b between the tan-
gents to two curves at a point of intersection may be found from 
the formula

tan b =
tan c2 - tan c1

1 + tan c2 tan c1
. (6)

When will the two curves intersect at right angles?

26. Find the value of tan c for the curve r = sin4(u>4).

27. Find the angle between the radius vector to the curve r =
2a sin 3u and its tangent when u = p>6.

28. a. Graph the hyperbolic spiral ru = 1. What appears to happen 
to c as the spiral winds in around the origin?

b. Confirm your finding in part (a) analytically.

29. The circles r = 23 cos u and r = sin u intersect at the point 
123>2, p>32. Show that their tangents are perpendicular there.

30. Find the angle at which the cardioid r = a(1 - cos u) crosses 
the ray u = p>2.

T

Chapter 11 Technology Application Projects

Mathematica ,Maple Modules:

Radar Tracking of a Moving Object
Part I: Convert from polar to Cartesian coordinates.

Parametric and Polar Equations with a Figure Skater
Part I: Visualize position, velocity, and acceleration to analyze motion defined by parametric equations.
Part II: Find and analyze the equations of motion for a figure skater tracing a polar plot.
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