module 1 CHAPTER FOUR
Theory of Probability

am—

4.1. Introduction. If an experiment is repeated under essentially
pomogeneous and similar conditions we generally come, across two. types of
situations:

(i) The result or what is usually known as-the ‘cutcome’ is unique or certain.
(ii) The result is not unique but may be one of the several possible outcomes.

The phenomena covered by. (i) are known as ‘deterministic’ or ‘predictable’
phenomena. By a deterministic phenomenon we mean one in which the result can
be predicted with certainty. For example :

(a) For a perfect gas,

Ve % i.e., PV = constant , ' -

provided the temperature femains the-same.
(b) The velocity ‘v of aparticle after time ‘¢ * is given by
v=u+at
where u is the initial velocity and d is the acceleration. This equation uniquely
determines v  if the right-hand guantities;are known.

(c) Ohm’s Law, viz., C= -J—;

where C is the flow of current, E the potential difference between the two ends of
the conductor and R theé résistance, uniquely determines the valie C as soon as E
and R are'given: .

A deterministic model is defined as a model which stipulates that the condi-
tions under which an experiment is performed determine the outcome of the
experiment. For a number of situations the deterministic modelsuffices. However,
there are phenomena [4s covered by (ii) above] which do not lend themselves to
deterministic approach and are known as ‘unpredictable’ Or ‘probabilistic’
phenomena. For example : ‘

(i) In tossing of & coin one is not siire if & head or tail will be obtained.
(ii) If a light tube haslasted for ¢ hours, nothing can be said about ‘its further
life. It may fail to function any moment.

Insuch cases we talk of chancé or probability which is'taken to'be a quantitative
measure of certainty.

42, Short History. Galileo (1564-1642), an Italian mathematician, was the
first to attempt at a quantitative measure of probbility while dealing with some
Problems related to the theory of dice in gambling. But the first foundation of the
mathematical theory if probability was laid in the mid-seventeenth century by two
French mathematicians, B. Pascal (1623-1662) and P. Fermat (1601-1665), while.
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solving a number of problems posed by French gambler and noble man Chevalier-
De-Mere to Pascal. The famous ‘problem of points’ posed by De-Mere to Pascal
s : "Two persons play a game of chance. The person who first gains a certain
numiber of points wins the stake. They stop playing before the game is completed,
How is the stake to be decided on the basis of the number of points each has won?"
The two mathematicians after a lengthy correspondence between themselves
ultimately solved this problem and this correspondence laid the first foundation of
the science of probability. Next stalwart in this field was J - Bernoulli (1654-1705)
whose ‘Treatise on Probability’ was published posthumously by his nephew N,
Bemoulli in 1713. De-Moivre (1667-1754) also did considerable work in this field
and published his famous ‘Doctrine of Chances’ in 1718. Other:main contributors
are : T. Bayes (Inverse probability); P.S. Laplace (1749-1827) who after extensive
research over a number of years finally published ‘Theoric analytique des prob-
abilities’ in 1812. In addition to these, other qiitstanding contributors are Levy,
Mises and R.A. Fisher.

Russian mathematicians also have made very valuable contributions to the
modem theory of probability. Chief contributors, to mention only a few of them
are;: Chebyshev (1821-94) who founded the Russian School of Statisticians;
A. Markoff (1856-1922); Liapounoff (Central Limit Theorem); A. Khintchine
(Law of Large Numbers) and A. Kolmogorov, who axiomised the ‘calculus of
probability. '

43, Definitions of Various Terms. In this section we will define and explain
the various terms which are used in the-definition of probability.

Trial and Event. Consider an experiment which, though repeated under
essentially identical conditions, does not give unique results but may result in any
one of the several possible outcomes.The experiment is known as a srial and the
outcomes are known as events or cases. For example :

(i) Throwing of a die is a trial and getting 1(or 2 or 3, ...or 6) is'an event.
(ii) Tossing of a coin is a trial and getting head (H ) or tail (T') is an event.

(iii) Drawing two cards from a pack of well-shuffled: cards is a trial.and
getting a king and a queen are events.

Exhaustiye Events. The total number of possible outcomes in any trial is
known as exhaustive events or exhaustive cases. For example :

(i) Intossing of a coin there are two exhaustive cases, viz., head and, tail,
(the possibility of the coin standing on an edge being ignored).

(ii) In throwing of a die, there are six exhaustive cases since any one of the
6 faces 1, 2, ...,6 may come uppermost. )

(iii) In drawing two cards from a pack of cards the exhaustive number of
cases is C3, since 2 cards can be drawn out of 52 cards in C, ways.

(iv) In throwing of two dice, the exhaustive number of cases is 6°= 36
since any of the 6 numbers 1.to 6 on the first die can be associated with any of the
six numbers on the other die.
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In general in throwing of » dice the exhaustive number of cases is 6.

Favourable Events or Cases. Thé number of cases favourable to an event in
a trial is the number of outcomes which entail the happening of the event. For

ample,
& (i) In drawing a card from a pack of cards the number of cases favourable
10 drawing of an ace is 4, for drawing a spade is 13 and for drawing a red card is
26.

(ii) In throwing of two dice, the number of cases favourable to getting the
sum S is: (14) 4,1) 23) 3.2), i.e.,4.

Mutually exclusive events. T-.‘.vems are said to be mutually exclusive or
incompatible if the happening of any one of them precludes the happening of all
the others (i.e., if no two or moré of them can happén simultarieously in the same
trial-For example :

(i) Inthrowing a die all the 6 faces'numbered 1 to 6 are mutually exclu-
sive since if any one of these faces comes, the possibility of othiers, in the same
trial, is ruled out.

(ii) Similarly in tossing a ¢6in thé evénts heéad and tail are riutvally exclu-
sive.

Equally likely events. Outcomes of a trial are set to be equally likely if taking
into consideration all the relevant evidences, there is no reason to expect one in
preference-to the others. For example -

(i) In tossing an-unbiased or uniform com, héad or tail areequally likely
events.

(ii) 1In throwing an unbiased die, all the six t‘accs are equally likely to'come.

Independent events. Several events are saidto be independént if the
happening (or non-happening) of an event is not affected by the supplementary
knowledge concerming the occurrence of any number of the remaining events . For
example

(i) In tossing.an unbiased coin the event of. getting a head in the first toss
is independent of getting a head in the second, third and subsequent throws.

(ii) If wedraw a card from a pack of well-shuffled cards andreplace it
before drawing, the second card, the result of the second draw is mdependcm of
the first draw. But, however, if the first card drawn is not replaced then the second
draw is dependent on the first draw. .

Deﬁzaon If a trial results in 7 exhaustive, mutually exclusive and equally

likely cases and m of them are favourable to the happening of an event £, ‘then the
probability ‘p* of happening of E is. givenby
p= P &)= Favourable number of cases _ m '
Exhaustive number of cases n . (41)
Sometimes we express (4-1) by saying that ‘the odds in favour of E arem -
(n~ m) or the odds againstE are (n— m): n.’
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Since the number of cases favourable to the ‘non-happening’ of the event E

are.(n— m ) , the probability ‘¢’ that E will not happen is given by
n~m
="y .(4-1a)

Obviously p as well as ¢ are non-negative and cannot exceed unity, i.e,
0<p<1,0<qg< 1.

Remarks. 1. Probability ‘p’ of the happening of an event is also known as
the probability of success'and the probability ‘g’ of the non- happening of the event
as the probability of failure.

2.1fP (E) = 1, E is called a certain event and if P (E) = 0, E is called an
impossible event. ) )

3. Limitations of Classical Definition. This definition of Classical Prob-
ability breaks down in the following cases :

(i) 1If the various outcomes. of the trial are not equally likely or equally
probable. For example, the probability that a candidate will pass in a certain test is
not 50% since the two possible outcomes, viz., sucess and failure (excluding the
possibility of a compartment) are not equally likely.

(ii) If the exhaustive number of cases in a trial is infinite.

=l—'—:-=fl-.p = p+ q=ll‘

Definition (Von Mises). If a trial is repeated- a number of times under
essentially homogeneous and identical conditions; then the limiting value of the
ratio of ‘the number of times the event- happens to the number of trials, as the
number of trials become indefinitely large, is called the probability of happening
of the.event. (It is assumed that the limit is finite and unique).

Symbolically, if in # trials an event E happens m times, then the probability
‘p’ of the happening of E is given by

] o

Solution, In a leap year (which consists of 366 days) there are 52 complete
Weeks and 2 days over. The following are the possible combinations for these two
‘over’ days:

(i) Sunday and Monday, (ii) Monday and Tuesday, (iii) Tuesday and Wed-
nesday, (iv) Wednesday and Thursday, (v) Thursday and Friday, (vi) Friday and
Saturday, and (vii) Saturday and Sunday. )

In order that 4 leap year selected at random should contain 53 Sundays, one of
the two ‘over” days must be Sunday. Since out of the above 7 possibilities, 2 viz.,
(i) and (vii), are favourable to this event,

2

Required probability = =

—
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~

Example 4-2. A bag contains 3 red, 6 white and 7 blue balls. What is the
probability that two balls drawn are white and blue?

Solution. Total numberof balls= 3+ 6+ 7= 16.

Now, out of 16 balls, 2 can be drawn in '°C; ways .
=10X03 10,

Out of 6 white balls 1 ball can be drawn in °C; ways and out of 7 blue balls 1
pall can be drawn in ’C, ways. Since each of the former cases can be assocized

with each of the latter cases, total number of favourable cases is : °Cix’C;
=6X7= 42.

Exhaustive number of cases = '°C,

Required probability = -]9-2%

1
55"

Solution. (a) From a pack of 52 cards 2 cards can be drawnin *C, ways,

all being equally likely.
‘Exhaustive number of cases= *C;

In a pack there are 4 aces'and therefore 2 dces can be drawn in ‘C, ways.
‘C; _ax3 2 1
%C,. 2 s2xsl 221

(b) Exhaustive number of cases = *Cjy

A pack of cards contains 4 kings, 4 queens and 4 knaves. A king, a queen and
aknave can each be drawn in “C, ways and since each way of drawing a king can
be associated with each of the ways of drawing a queen and 4 knave, the total
number of favourable cases = ‘C; X ‘Cy x ‘C,
‘Cix*Crx*C; _4x4x4x6_ 16

Required probability =

Required probability =~ - == = 53« 51x 50 5525
(c) Exhaustive number of cases =*2C, .
(i) Required probability = :‘Z
(ii) Required probability =& X UC',,’;”C' X",
)
(ii) Required probability= ."C—;’;:—’C-’
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Solution. One hand in a game of bridge consists of 13 cards.
Exhaustive number of cases = *Ci3
Number of ways in which, in one hand, a particular player gets 9 cards of one
suitare Cy and the number of ways in which the remaining 4 cards are of some
other suit are *C,. Since there are 4 suits in a pack of cards, total number of
favourable cases = 4 x '°Cy x *C..
4x 1sc9 x ”C4

Required probability = 50
13

Example 4-5.

Solution. (a) Total number of cases = S x 4= 20
(i) Now there are 12 cases in which the first digit drawn is-odd, viz., (1, 2),

(1,3),(1,4),(1,5), 3,1), 3,2),(3,4), (3,5), (5, 1), (5,2), (5, 3) and (5, 4).

~. The probability that the first digit drawn is odd

T200S
(ii) Also there are 12 cases in which the second digit drawn is odd, wviz.,
@2,1),C2,1),4,1),(5,1),(1,3),2,3),4,3),(5,3),(1,5),(2,5), 3,5 and (4, 5).
The probability that the second digit drawn is odd
12 3
T2 S
(iii) There are six cases in which both the digits drawn are odd, viz., (1, 3),
1,5),(3,1),(3,5),(5,1) and (5, 3).
The probability that both the digits drawn are odd
6 3
20 10
(b) (i) Numbers (out of the first 25 numerals) which are multiplcs of 5 are 5,
10, 15,20 and 25, i.e., S in all and the numbers which are multiples of 7 are 7, 14

and 21,i.e., 3in all. Hence required' number of favourable cases are 5+3=8.

Required probability = %

(i) Numbers (among the first 25 numerals) which are multiples of 3 are 3,6,
9,12, 15, 18, 21, 24, i.e., 8 in all, and the numbers which are multiples of 7 are 7,
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14,21, i.e.,3 inall. Since the number 21 is common in both the cases, the required
number of distinct favourable casesis 8§ + 3~ 1= 10.
2

10 _2
Required probability = 25"

Example 4-6.

Solution. There are 3+4+2+1=10 persons in all and a committee of 4 people
can be formed out of them in '°C, ways. Hence exhaustive number of cases is
10¢, = 10x3x'8x7 = 210
(i) Favourable number of cases for the committee to consist of 4 members, one
from each category is :
‘CixPCixCix1 = 4x3x2 =24
24 8
Required probability = 210 = 70
(ii) P [Committee has at lcast one purchase officer]
= 1 - P [Committee has no purchase officer]
In order that the committee has no purchase officer, all the 4 members are to
be selected from amongst officers of production department, sales department and
chartered accountant, i.e., out of 3+2+1=6 members and this can be done in

S~ 6X5_
Ce= 12" 15 ways. Hence

15 _ 1
P [ Committee has no purchase officer ) = 210 = 14
“ P [ Committee has at least one purchsse officer ] = 1- {74- = 3

(iii) Favourable number of, cases that the committee consists of a chartered
accountant as a member and three others are :

e, = 2xX8xT _ s
1x°C = =253 - 84 ways,
since a chartered accountant can be selected out of one chartered accountant inon'y

1 way and the remaining 3 members can be selected out of the remaining

10~ 1= ¢ personsin °C; ways. Hence the required probability = m = -§-

Example 4-7.
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Solution. (a) The word ‘REGULATIONS’ consists of 11 letters. The two
letters R and E can occupy ''P;, i.e.,11x 10 = 110 -positions.

The number of ways in which there will be exactly 4 letters between R and E
are enumerated below:

(i) Risin the st place and E is in the 6th place.

(ii) R is in the 2nd place and E is in the 7th place.

LYYy LYYy oo
oo LYy oo

(vi) R is in the 6th place and E is in the 11th place.
Since R and E can interchange their positioiis, the required number of
favourable casesis 2X 6= 12
The required probability = -z = £
() Total number of permutations of the 11 letters of the word ‘MISSISSIPPI,
in which 4 are of one kind (viz., S), 4 of other kind (viz., ), 2 of third kind
(viz., P) and 1 of fourth kind (viz., M) are

11!
414121 1! )
Following are the 8 possible combinations of 4 §’s coming consecutively:
(i) s 5§ S S
(i) - 5 § s S
(i) — — 5§ 5§ s S
wii)  — — — — — §5*S S§ S

Since in each of the above cases, the total number of arrangemerits of the
remairing 7 letters, viz., MIIIPPI of which 4 are of one kind, 2 of other kind

!

and cne of third kind are :1—'%'_1' , the required number of favourable cases
_ 8x7!
T 41201

. - 8§ x 7! 11!
Required probability = 2/ 7 * 3721 21 11
. 8xT7!x4! 4
’ - 11! T 165

Excraple 4-8 -

nave real roots. [{Madras Univ. B. Sc. (Stat. Main), 1992]
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Solution. The roots of the equation ax’+bx+c = 0 (®)
will be real if its dxscnmmant is non-negative, i.e., if
-4ac20 = b 24dac
Since each co-efﬁcnent in equation (*) is determined by throwing an ordinary
die, each of the co-efficients a, b and ¢ can take the values fiom 10 6.
-, Total number of possible outcomes (all being equally likely)

=6%xX6%x6 =216
The number of favourable cases can be enumerated as follows:
ac a c 4ac b No. of cases
( so that B* > 4ac )

1 1 1 4 2,3,4,5 1 x5=3

2 @) 1 2 _
(i) [2 ] 8 3,4,5,6 2x4=8

3 () N 3 _
@ 13 ] 12 4,5,6 2x3=6

4 o 1 4
@) 14 1 .16 4,5,6 3 x3=9
@) 12 2

5 () )1 h) _
@ {S " 20 5,6 2x2=4

6 () 1 6
@ J6 1 _
@iy |3 2 24 5,6 4x2=28
vy 2 3

7 (ac =17 ls not possxble )

8 () J2 _
(u') { 4 6 2x1=2

3 36 6 , 1

Total = 43

Since b* > 4ac and since the maximum value of b’ is 36, ac = 10, 11, 12, ..
elc. is not possible.

Hence total number of favourable cases = 43.

Required probability = 24_136

Example 4. The sum of two non-negative quaniiies i equal (o . Find the

Sotution. Let x> 0 and y > 0O be the given quantities so that x+ y= 2n.
We know that the product of two positive quantities whose sum is constant is

greatest when the quantities are equal. Thus the product of x and y is maximum
whenx= y= n.


Highlight

Highlight


410 Fundamentals of Mathematical Statistics

Maximum product= n.n = n*
Now P[xy( %n2}=P[xyz-3-nz]=P[x (h—x)zénz]
=P [(4x*-8nx + 3n’)< 0}
=P [(2x-3n)(2x~n) < 0]

- i Eoand B
=P [x lies between 2 and 2]

4

Favourable range = 32—"— g =n
Total range =-2n
Required probability = 7= = %

Example 4-10.

[Calicut Univ. B.Sc., 1991; Delhi Univ. B.Sc.(Stat. Hons.), 1992]
Solution.  Since out of (2n+ 1) tickets, 3 tickets can be drawn in 2+ 1¢,
ways,

Exhaustive number of cases = 21+ 1¢, = 28+ 1) 21 2n - 1)

B 3!
_n@n-1)
B 3
To find the favourable number of cases we are to enumerate all the cases in
which the numbers on the drawn tickets are in AP with common difference, (say
d=1,2,3...,n—1,n).

Ifd= 1, the possible cases are as follows:

1, 2, 3
2,3 4
... b ie,(2n-1) cases in all
w1, n, '.2n+lj
If d= 2, the possible cases are as follows :
1, 3, 5§

2, 4, 6
A [, i.e.,(2n—-3) cases in all

-3, 2n-1, 2n+1
and so on.

s
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If d = n—1, the possible cases are as follows:
i,n, 2n-1
2,n+1, 2n , l.e., 3 cascs in all
3,0n+2, 2n+1

If 4 = n, there is only one case, viz., (I, n + 1, 2n + 1).

Hence total number of favourable cases
=2n-=-1)+Q@n-3)+.+5+3+1
=1+3+5+..+Q2n-1),

which is a series in A.P. with d =2 and n terms.

.. Number of favourable cases =§ [t+@n-1)]=n?

. - n? 3n
. Required probability = w @n2=1)/3 = @n2=1)

EXCERCISE 4 (a)

[Delhi Univ. B.Sc. (Stat. Hons.), 1988, 1985}

I

[Delhi Univ. B.Sc., 1987, 1985]
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[(Meerut Univ. B.Sc.(Stat.), 1987
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[Delhi Univ. B.A.1988]




[Madras Univ. B.Sc.(Main Stat ), 1987)
3 S
) GG X

12 C4 C‘

(Madras Univ. B.Sc., Oct. 1992)

(Delhi Univ. B.Sc.(Subs.), 1988]

[Delhnl Umlv. B.Sc.(Maths Hons.!, 1987]

Hint. (365x 364 x... x 341) + (365)”

4.4. Mathematical Tools : Preliminary Notions of Sets. The set theory was
developed by the German mathematician, \3. Cantor (1845-1918).

4:4-1. Sets and Elements of Sets. 4 set is a well defined collection or
aggregate of all possible objects having give 1 properties and specified according
to a well defined rule. The objects comprising a set are called elements, members
or points of the set. Sets are often dénoted by capital letters, viz., A, B, C, etc. Ifx
isaa element of the set A, we write symbolically x€ A (xbelongs.to A). If x is not
a member of the set A, we write x ¢ A (x does not belong to A ). Sets are often
described by describing the properties possessed by their members. Thus the set
A of all non-negative rational numbers with square less than 2 will be written as
A ={x :xrational, x > 0,x* < 2}.

If every element of the set A belongs to the set B, i.e., if x € A =>x € B, then
we say that A is a subset of B and write symbolically A c B (A is contamed in B)
orB2 A (BcontainsA ). Two setsA and B are said to be equal or identical if
Ag BandBgcA andwewritA=BorB=A.

A null or an empty set is one which does not contain any element at all and is
denoted by ¢.

Remarks. 1. Every set is a subset of itself. m O d u I e 2

2. An empty set is subset of every set.

3. A set containing only one element is zonceptually distinct from the element
itself, but will be represented by the sam¢ symbol for the sake of convenience.

4. As will be the case in all our applications of set theory, especially to
probability theory, we shall have a fixed set § (say) given in advance, and we shall
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pe concemed only with subsets of this given set. The underlying set S may vary
from one application to another, and it will be referfed to as universal set of each
icular discourse.
4.4-2, Operation on Sets
The union of two given sets A and B, denoted by A U B, is defined as a sat
consisting of all those points which belong to either A or B or both. Thus
symbolically.
AUB={x:xe Aorxe B).
Similarly
n
U A ={x:xeA foratleastonei=1,2,..,n)
i=1
The intersection of two sets A and B, denoted by A N B, is defined ac a set
consisting of all those elements which belong to both A and B. Thus
ANnB={x:xe Aandxe B}.
Similarly
n
NAi =(x:xe A foralli=1, 2, .., n}
i=1 .
For example, if A= (1,2, 5,8,10) and B = (2, 4,8, 12), then
AUB =(1,2,4,5,8,10,12} andAn B = (2,8]}.
If A and B have no common point, i.e., A N B = ¢, then the sets 4 and B are
said to be disjoint, mutually exclusive or non-overlapping.
The relative difference of a set A from another set B, denoted by A-B is defined
as a set consisting of those elements of A which do not belong to B. Symbolically,
A-B={x:xe Aandx¢ B} .
The complement or negative of any set A, denoted by 4 is a set containing all
elements of the universal set S, (say), that are not elements of A, ie.. 4 =S -A.
4-4-3, Algebra of Sets
Now we state certain important properties concerning operations on sets. If A,
B and C are the subsets of a universal set S, then the following laws held:

Commutative Law AUB=BUA,ANnB=BnNnA
Associative Law : AUB)UC=AUBULO)
ANB)NnC=ANnBNCO)
Distributive Law : ANBUC)=(ANB)UANC)
AUBNCO)=AUBINALC)
Complementary Law AUA=S ,ANA=¢

AUuS=S§S,(""A=S),ANnS=A
AVud=A,ANné=¢
Difference Law : A-B=ANB
A-B=A-(ANB)=(AUB)-B
A-B-C)=A-B)v(A-0).
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(AuB)-C=A-C)u(B-0
A-BuUO=A-B)NA-0)
ANB)UA-B)=A,ANnB)N(A-B)=¢
De-Morgan’ s Law — Dualization Law.
(AUB)=AnB and (ANB)=AUB
More generally -

A;
1

n n 3
(VA)=nNn3Z and ( N A) =
i=1 i=1 i=1 i
Involution Law : @ =A
Idempotencylaw : AUA=A, ANnA=A

4-4-4, Limit of Sequence of Sets
Let (A.} be a sequence of sets in S. The limit supremum or limit superior of
ithe sequence , usually written as lim sup A.,, is the set of all those elements which
belong to A, for infinitely many na. Thus
lim sup A.= { x:x € A, forinfinitelymanyn} »
R0 . ..(4-3)
The set of all those elements which belong to A, for all but a finite number of
n is called limit infinimum. or limit inferior of the sequence and is denoted by lim
inf A,. Thus

lim inf A, = (x:x € A. for all buta finite number of n }
n—0 ...(4-3 a)
The sequence {Aa) is said to have a limit if and only if lim sup A.
= lim inf A, and this common value gives the limit of the sequence.

n

Theorem 4-1. limsup An= N ( U An)

m=1 a=m

and liminf An= U ( N0 Ap)
m=1 n=m

Def. {A.) is a monotone (infinite) sequence of sets if either

(i) AvcAwr VY n or (i) AiDAv V n

In the former case the sequence {A,) is said to be non-decreasing sequence
and is usually expressed as A, T and in the latter case it is said to be non-increasing
sequence and is sxpressed as A.{ .

For amonotone sequence (non-increasing or non-decreasing), the limit always
exists and we have,

U A. in case (i), ie., AT

lim A,={ "=!

o= N A, in case (if), ie.,Ad

n=1



Theory of Probability 417

4-4.5.Classes of Sets. A group of sets will be termed as a class (of sets). Below
we shall define some useful types of classes.
A ring R is a non-empty class of sets which is closed under the formation of
*finite unions’ and ‘difference’,
je,ifA€R, BeR,then AUB € Rand A-BeR.
Obviously ¢ is a member of every ring.
A field F (or an algebra) is a non-empty class of sets which is closed under
the formation of finite unions and under complementation. Thus
(i) Ae F,Be F = Au Be F and
(ii) Ae F= Ae F.
Ao-ringCisa non-empty class of sets which is closed under the formation
of ‘countable unions® and ‘difference’. Thus

(i) Aie C,i=1,2,... = UAeC
i=1

(i) Ae CCBe C = A-BeC.

More precisesly g-ring is a ring which is closed under the formation of
countable unions .

A o field (or o-algebra) B is a non-empty class of sets that is closed under
the formation of ‘countable unions’ and complememauons.

ie.,

(i) A e Bi=1,2,... = uUAe€B.
i=1

(i)Ae B = Ae€B.

o-field may also be defined as a field which is closed under the formation of
countable unions.

4.5. Axiomatic Approach to Probability.. The axiomatic approach to prob-
ability, which closely relates the theory of probability with the modern metric
theory of functions and also set theory, was proposed by A.N.. Kolmogorov, a
Russian mathematician, in 1933. The axiomatic definition of probability includes
‘both’ the classical and the statisticat definitions as particular cases and overconies
the deficiencies of each of them. On this basis, it is possible to construct a logically
perfect structure of the modern theory of probability and at the same time to satisfy
the enchanced requirements of modern natural science. The axiomatic develop-
ment of mathematical theory of probability relies entirely upon the logic of
deduction, .

The diverse theorems of probability, as were available prior to 1933, were
finally brought together into a unified axiomised system in,1933. It is important to
remark that probability theory, in common with all axiomatic mathematical sys-
tems, is concerned solely with relations among undefined things.

The axioms thus provide a set-of rules which define relationships between
abstract entities. These rules can be used to deduce theorems, and the theorems can
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be brought togethér to deduce more complex theotems. These theorems have no
empirical meaning although they can be given an interpretation in terms of
empirical phenomenon. The important point, however, is that the mathematical
development of probability theory is, in no way, conditional upon the interpretation
given to the theory.

More precisely, under axiomatic approach, th? probability can be deduced
from mathematical concepts. To start with some concepts are 1aid down. Then some
statements are made in respect of the propérties possessed by these concepts. These
properties, often termed as "axoms" of the theory, are used to frame some
theorems. These theorems are framed without any reference to the real world and
are deductions from the axioms of the théory.

4.51. Random Experiment, Sample Space. The theo:y of probability
provides mathematical models for “"real-world phenomenon” involving games of
chance such as the tossing of coins and dice. We feel intuitively that statements
such as

(i) "The probability of getting a "head” in one toss of an unbiased coin is 172"

(ii) "The probability of getting a "four” in a single toss of an unbiased die is
1/6",
should hold. We also feel that the probability of obtaining either a "5" or a "6" in
a single throw of a die, should be the sum of the probabilities of a 5" and a "'6",
viz., 1/6+1/6=1/3. That is, probabilities should have somekind of additive property.
Finally, we feel that in a large number of repetitions of, for example, a coin tossing
experiment, the proportion of heads should be approximately 1/2. 1hat is, the
probability should have a frequency interpretation.

To deal with these properties sensibly, we need a mathematical description ot
model for the probabilistic situation we have. Any such probabilistic situation is
referred to as arandom experimemn, denoted by E. E may be a coin or die throwing
experiment, drawing of cards frcm a well-shuffled pack of cards, an agricultural
experiment to determine the effects of fertilizers on yield of a commodity, and so
on.

Each performance in a random experiment is called a trial. That is, all the trials
conducted under the same set of conditions form a random cxperimcent. The result
of a trial in a random experiment is called an outcome, an elementary event or
<emple point. The totality of all possible outcomes (i.e., sample points) of 2 random
exneriment constitutes the sample space.

Suppose ei, €3, ..., eaare the possible outcomes of a random experiment E such
that no two or more of them can occur simultaneously and exactly one of the
‘outcomes €, €z, ..., &, must occur. More specifically, with an experiment E, we
associated a set S = (e, €y, ..., &) Of possible outcomes with the following
properties:

(i) each element of § denotes a possible outcome of the experiement,
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(ii) any trial results in an outcome that corresponds to one and only one element
of the set S.

The set S associated with an expzriment E, real or conceptual, satisfying the
above two properties is called the sample space of the experiment.

Remarks. 1. The sample space serves as universal set for all questions
concened with the experiment.

2. A sample space S is said to be finite (infinite) samplé sapce if the number
of elements in § is finite (infinite). For example, the sample space associated with
the experiment of throwing the coin until a head appears, is infiiiite, with possible
sample points

[O)h W, 3, W4, .. }
where =H, w,=TH, @ =TTH, @=TITH,and soon, Hdenoungaheadand
Tatail.

3. A sample space is called discrete if it contains only finitely or infinitely
many points which can be arranged into a simple sequence @, @2, ..., while a
sample space containing non- denumerable number of points is called a continuous
sample space. In this book, we shall restrict ourselves to discrete sample spaces
only.

4:5:2. Event. Every non-empty subset A of S, which is a disjoint union of
single element subsets of the sample space S of a randota experiment E is called
an event. The notion of an event may also be defined as follows:

"Of all the possible outcomes in the sample space of an experiment,some
outcomes satisfy a specified description,which we call an event.”

Remarks. 1. As the empty set ¢ is a subset of S , ¢ is also an event, known as
impossible event.

2. An event A, in particular, can be a single element subset of S, in which case
itis known as elementary event.

4.5-3. Some Illustrations — Examples. We discuss below some examples
to illustrate the concepts of sample space and event.

1.Consider tossing of a coin singly. The possible outcomes for this experiment
are (writing H for a "head" and T for a "tail") : H and T. Thus the sample space §
consists of two points {w,, w,), corresponding to each possible outcome or
elementary event listed.

ie, S={w, @)=(HT)andn(S)=2,
where n(S) is the total number of sample points in S.

If we consider two tosses of a coin, the possible outcomes aze HH, HT, TH,
TT. Thus, in this case the sample space S consists of four points {, ;, s, W),
corresponding to each possible outcome listed and n(S )= 4. Combinations of these
outcomes form what we call events. For example, the event of getting at lea. t one
head is the set of the outcomes { HH HT,TH} = {®,, &2, 3). Thus, mathematically,
the events are subsets of S.
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2. Letus consider a single toss of a die. Since there are six possible outcomes,
our sample space S is now a space of six points (@, 0, ..., 0} where o cor-
responds to the appearance of number i. Thus S={®;, ®;, ..., 0}=(1,2,....6} and
n(S)=6. The event that the outcome is even is represented by the set of poinis
(@2, o, ). _

3. A coin and a die are tossed together. For this experiment, our sample space
consists of twelve points {w;, @, ...., W12} where ; (i=1,2, ..., 6) represents a
head on coin together with appearance of ith number on the die and «;
(=18, ..., 12)represents a tail on coin together with the appearance of ith number
on die. Thus

S={w, 0, .,0n)={(H,T)x (1,2,..,6))andn(S)=12

Remark. If the coin and die are unbiased, we can see intuitivety that in each
of the above examples, the outcomes (samplé points) are equally likely to occur,

4. Consider an experiment in which two balls are drawn one by one from an
urn containing 2 white and 4 blue balls such that when the second ball is drawn,
the first is not replaced.

Let us number ihé six balls as 1,2, 3,4, 5 and 6, numbers 1 and 2 representing
a white ball and numbers 3, 4, 5, and 6 representing a blue ball. Suppose in a draw
we pick up balls numbered 2 and 6. Then (2,6) is called an outcome of the
experiment. It should be noted that the outcome (2,6) is different from the outcome
(6,2) because in the former case ball No. 2 is drawn first and ball No.6 is drawn
next while in the latter case, 6th ball is-drawn first 'and the second ball is drawn
next.

The sample space consists of thirty points as listed below:

o=(12) @»=(13) »=(14) e =(1.5) s =(1,6)
Ws =(2s1) Oy =<2:3) (0] =(2’4) Wy =(2’5) o =(2’6)

wn =(3,1) 2=(3,2) 3 =(3.4) o =3,5) s =(3,6)

Ws6 =(4,,1) W7 =(4,2) g =(4,3) (1) =(4»5)_ Wx =(4,6).

0z =(5,1) ©02=52 0x=53) u=04) W5=(56)

(0713 =(6’1) Wy =(6’2) (-] =(613) (07 =(6’4) W30 =(6,5)

Thus

§ = (w1, 02, W, ..., ) and a(S) = 30
= §=(1,2,3,4,56)x(1,2,3,4,5,6)
- [(1’ l)v (2’ 2)’ (31 3)’ (4’ 4), (S, 5)’ (6’ 6)‘

The event

(i) the first ball drawn is white
(ii) the second ball drawn is white
(iii) both the balls drawn are white
(iv) both the balls drawn are black
are represented respectively by the following sets of points:
{@1, @z, w3, 0, s, 0, G, Ws, Wy, Wro},
{1, W, W11, 12, W6, V17, W1, W2, W26, O},
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(o, Ws %), and
{ @13, W14, 15, Ors, W19, W20, W3, W24, s, W23, W29, W30).
5. Consider an experiment in which two dice are tossed. The sample space §
for this expenmem is'given by
={1,2,3,4,5,6}.%{1,2,3,4,5,6)
and n(S )=6x6=36.
Let E, be the event that ‘tlie sum of the spots on the dice is grw't‘er than 12°,
E2 be the event that ‘the sum of spots on the dice is divisible by 3°, and E3 be the
event that “the sum is greater than or equal to two and is less than or equal i 12",
Then these events are represented by the following subsets of S :
E|—[¢} E;qﬂand ®
E?. = [(lo 2)v (l' 5)' (2v l)' (2' 4)» (3v 3)» (3v q)v (40 2)»
@,5),(5,1),(5.4), 6, 3),6,6)}
Thus n(E))=0, n(E2)=12, and n (E;)=36
Here E is an ‘impossible event’ and E; a ‘certain event’.
6. Let E denote the experiment of tossing a coin three times in succession or
tossing three coins at a time. Then the sample space § is given by

S={H.TYx (H, T)x (H,T)
={H, T} x (HH, HT, TH, TT)
= (HHH, HHT, HTH, HTT, THH, THT, TTH, TTT)
= (W, 2, W, ..., W), Say.

If E, is the event that ‘the number of heads exceeds the number of tails’, £,,
the event of ‘getting two heads’ and E,, the event of geuting ‘head in the first trial’
then these are represenied by the following sets of points :

- Ey= {0, 0, 03, @),
Ez= (02, i3, )

and E; = (an, o, O3, 04).

7. In the foregoing examples the sample sapce is finite. To construct an
experiment in which the sample sapce is countably infinite, we toss a coin
repeatedly until head or tail appears twice in succession, The sample space of all
the possible outcomes may be represented as :

S = (HH,TT, THH, HTT, HTHH, THTT, THTHH,; HTHTT, ...},

4.5-4. Algebraof Events. ForeventsA,B,C

(i) AuUB= {wme S: we Aor ® € B)
(i) AnB= {wne S: we Aand ® € B},
(iii) A(A complement) = {0 e S: ¢ A}
(iv A-B= (0 e S:0 € Abut(ne B}

(v) Similar generalisations for u Ai, n A;, u A; etc.

i=1 i=

(vi) Ac B = for every ® € A. ® € B.
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(vii) B oA = A cB.
(viii) A = B if and only if A and B have the same elements, i.e.,if A_&' B
and B'c A.
(ix) 'A and B disjoint ( mutually exclusive) = A N B=¢ (null ser).
(x) A U B canbe denoted by A + B if A and B are disjoint.

(xi) A A B denotes those o belonging to exactly one of A and B, i.e.,
AAB=ABuUAB
Remark. Since the events are subsets of §, all the laws of set theory viz,,
commutative laws, associative laws, distributive laws, De-Morgan’s law, etc., hold
for algebra of events. ,
Table - Glossary of Probability Terms

. Statement Meaning in tekms
of set theory

1. At least one of the events A
or B occurs. we AUB

2. Both the events A and B occur. "we ANnB

3. Neither A nor B occurs we AnB

4. EventA occurs and B does not
ocur we ANB

5. Exactly one of the events A orB
occurs. we AAB

6. Not more than one of the events .
A or B occurs. weANBD U@ANB UANDE

7. If event A oceurs, so does B AcB

8. Events A and B are mutually ex- .
clusive. ANnB=¢

9. Complementary event of A. A

10. Sample space universal set §

Example 4-11. A, B and C.are three orbitrary events. Firid expressions for the
events noted below, in the context of A, B and C.
(i) only A occurs,
(ii) Both A and B, but not C, occur,
(iii) All three events occur,
(iv) At least one occurs,
(v) At least two occur,
(vi) One and no more occurs,
(vii) Two'dnd no more occur,
(viii) None occurs.
Solution. '
(i) AnBNC, (i) AnBNC, (i) ANBNC,
(iv) A u‘B vC, i



Theory of Probability 423

(v) (AnBNC) U (ANBNC) U (ANBNC) U (ANBNC)
i) (ANBNAC)U(ANBNC)U(ANBNC)
wii) (ANBNC)V(ANBNCYU(ANBNC)
(viii) AnBNC or AUBUC
EXERCISE 4(b)

(c) -
(e)

e
=







4.6. Probability — Mathematical Notion. We are now set to give the
mathematical notion of the occurrence of a random phenomenon and the. mathe-
matical notion of probability. Suppose in a large number of trials the sample space
S contains N sample points. The event A is defined by a description which is
satisfied by N4 of the occurrences. The frequency interpretation of the probability
P(A) of the event A, tells us that P(A)=N,/N.

A purely mathematical definition of probability cannot give us the actual yalue
of P(A) and this must be considered as a function defined on all events. With this
in view, a mathematical definition of probability is enunciated as follows:

“Given a sample description space, probability is a function which assigns a
non-negative real number to every event A, denoted by P(A) and is called the
probability of the event A."

4:6-1. Probability Function. P(A)is the pmbabllity function definedona
o-field B of events if the following properties or axioms.hold :

L ForeachA e B, P(A)is defined, is real and P(A) 20

2.P(S)=1

3.1f (A.) is any finite or infinite sequence of disjoint events.in B,.then

n
P( ulA.) Y P(A) (4-4)
= i=1

The above three axioms are termed as the axiom of positiveness, ccrlamty and
union (additivity), rcspecuvely

Remarks. 1. The set function P definedon o-field B, taking its values in the
real line and satisfying the above three axioms is called’the probability reasure.

2. The same definition of probability applies to uncountable sample space
€xcept that special restrictions must be placed on S and its subsets. It is important
torealise that for a complete description of a probability measure, three things must
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be specified, viz., the sample space S, the o-field (0-algebra) B formed from certain
_subsét of S and set function P. The triplet (S; B, P,) is often called the probability
space. In most elementary applications, S is finite and the c-algebra B is taken to
be the collection of all subsets of S.

3, It is interesting to see that there are some formal statements of the properties
of events derived from the frequency approach. Since P(A)=N,/N, itis easy to see
that P(A) 2 0, as in Axiom 1. Next since N5 =N, P(S)=1, as in Axiom 2. In case
of two mutually exclusive (or disjoint) events A and B defined by sample points
Na and N,, the sample points belonging to A U B are Ny + Nj. Therefore,

P(AUB )=N‘—;&=%‘ + %:P(AHP (B), as in axiom 3.

Extended Axiom of Addition. If an event A can materialise in the occurrence

of any one of the pairwise disjoint events A;, A, ... so that

A=U Ai; AinAi=¢ (i#))

i=1

PA)=P (U A)= Y, P(A) (1)
= i=1
Axiom of Conticuity. If B, B,, ...., B., ... be a countable sequences of events
such that

(i)B;>B;.,, (i=1, 2, 3, ..)
and

(ii) N B,=¢
n=1
i.e., if each succeeding event implies the preceeding event and if their simul-
taneous occurrence is an impossible event then
dim P(B,)= 0 «(2)
R~yoo
We shall now prove that these two axioms, viz., the extended axiom of addition
and axiom of continuity are equivalent, i.e., each implies the other, i.e., (1) & (2).

Theorem 4-1. Axiom of continuity followsfrom the extended axiom of addition
and vice versa.
Proof. (a) (1) =(2). Let {B.} be a countable sequence of events such that
BioB,0B3>..., DB, DB..1D...
and let foranyn 2 1,
N Bi=¢ *
k2n
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B'a¢l
—— Ba+2
Bys1 B’.oz
Ba N B'ny 1
Then it is obvious from the diagram thai
B. =Ba B'n4~l U.Ba4 1 B'A+2 V...V ( N Bg)
. k2n
= By=( U BtBriu( N By,
k=n kgn

where the events B, B'y.1; (k=n, n+1, ...) are pairwise disjoint and each is disjoint
with N Bs.

k2n

Thus B, has been expressed as the countable union of pairwise disjoint events
and hence.by the extended axiom of addition, we get

P(B.):Z P(B:B's.1)+P( N By)
k=n k2n

= 3 P@B4., (=)
k=n
since, from (*)
P( n B)= P(¢)=0
k2n
Further, from (*#), since

Y P(BiB1a)=PB)<],
k=1
the right hand sum in (+#*), being the remainder after n terms of a convergent series
tends to zero as n—oo.
Hence

hm P (B)= lim Z P(B:B:.1)= 0

R—yo0 p =n
Thus the cxtended axiom of addition implies the axiom of continuity.

(b) Conversely (2) = (1), i.e., the extended axiom of addition follows from
the axiom of continuity.
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Let {A,) be a countable sequence of pairwise disjoint events and let

3
A= U A.‘
i=1
n oo
=(UVAU( U A «(3)
i=1 di=n+1
Let us define a countable sequence {B.) of events by
Ba = VU Ai ...(4)
=n
Obviously B, is a decreasing sequence of events, i.e.,
ByoBy>...oB,DB.,D... «{5)
Also we have
n
A=( U A)UB,., «(6)
i=1
Since A; ’s are pairwise disjoint, we get
AinB.. =0, (i=1,2, .., n ..(6a)

From:(4) we see thatif the event B, has occurred it implies the occurrence of
any one of the events A, 1, A1 2,... Without loss of generality let us assumie that
this event is A; (i=n+ 1, n+2,...). Further since A;'s are pairwise disjoint, the
occurrence of A; implies that events A;,1,Ai,2, ... do not dccur leading to the
conclusion that B;., B;. 2, ... will not occur.

= N Bi= ¢ (7)

From (5) and (7), we observe that both the conditions of axiom of continuity
are satisfied and hence we get

t

lim P(B,)=0 .(8)

R—yoo
‘From (6), we get

PA)= P[( :J A) U Bayi]

= Y, P(A)+P(Basr)
i=1

(By axiom of Additivity)

F5 ]
= P( v A)= lim Y, PA)+ Lim (Bu.r)

i=1 n—oo ;g n—reo
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=Y PA), [From (8)]
i=1

[}

which is the extended axiom of addition.
THEOREMS. ON PROBABILITIES OF EVENTS

Theorem 4-2. Probability of the impossible event.is zero, i.e.,.P (¢) = 0:
Proof. Impossible event contains no sample point and lience the certain event
S and the impossible event ¢-aré' mutually exclusive.

Hence Sue=S§

P(Sud)= P(Sy

= PS)+ P@)= P (5) (By Axiom 3]
= P@)=0 : BN

Remark. It may be noted P(A)=0, does not imply that A is necessarily an
empty set. In practice, probability ‘0’ is assigned to the events which are so rare
that they happen only once in a lifetime. For example, if a person ‘who does not
know typing is asked to type the manuscript of a book, the probability of the-event
that he will type it correctly without any mistake is 0.

As another illustration, let us consider the random tossing of a coin. The event
that the coin will-stand erect on its edge, is assigned the probability 0.

“Thé study of continuous random variable provides another illustration to the
fact that P(A)=0, does not imply A=, because in case ‘of continous random
variable X, the proability at a point is always zero,i.e., P(X=¢)=0 [See 'Chapter 5].

Theorem 4-3. Probability of the complementary event A of A is given by

P@A)="1-P(A)
Proof. A and A are disjoint events.
Moreover , Avid=S§

From axioms 2 and 3 of probability, we have
PAUA=PA)+ PA)=P@)=1

= P@=1-P@A)
Cor.1. Wehave P(A)=1-P(A)
= PA)<1 (-~ PA)20)

Cor.2. P(¢)= 0,sinced¢=7T
and P@)=P®)=1-P@8)=1-1=0.
Theorem 4-4. For any two events A and B,
P@ANB)= PB)-P(ANB) [Mysore Univ. B.Sc., 1992]
Proof.
AnB and ANB are disjoint eventsand
(AN B)U(ANB) =B
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S
Hence by axiom 3, we get
A PB)=P(AnB)+ P(ANB)
a =P@AAB)= P.B)- P(ANB)
Rewmark. Similarly, we shall get
B P(ANnB)= PA)- P(ANB)

Theorem 4-5. Probability of the union of any two events A and B is given by
PAuUB)=P(A)+ P(B)- P(AnB)
Proof. A U B can be written as the union of the two mutually disjoint events,
Aand BnA . '
: PAUB)= P[AUBNA)]= P(A)+ P(BNA)
= P@A)+P@B)-P(ANB) (cf. Theorem 4-4)

Theorem,4-6. If B C A, then
(i) PANB)= P(A)- P(B),
(ii) P B)<P(A)
Proof. (i) When Bc A, Band A N B are
mutually exclusive events and their unionisA | )
Therefore
PA)=P{BU(ANDB)] A
=P(B)+ P(ANnB) {By axiom 3]
= P(ANB)= P(A)- P(B) .
(i) Using axiom 1,

PANnB)20 = P@A)-P®B)20
Hence P(B) < P(A) -
Cor. Since ANB)cA and @ANB)cB,

P(AnNnB)<P(A) and P(ANB)<P@B)

4.6-2. Law of Addition of Probabilities
Statement. If A and B are any two events [subsets of sample space S] and are
not disjoint, then

PAUB)=P @A)+ P(B)- P(ANnB) «(4:5)
Proof.

ANnB
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—_—

We have
AUB=AU@ANB)
Since A ar i (A N B) are disjoint ,
P(AUB)= P(A)+ PANB)
=P@A)+ [PANB)+ PANB)]+ P(ANnB)
=PA)+ P[ANB)u(ANB)]- P(ANB)
[ (AN B) and (A N B) are disjoint ]

= P(AuUB)=P(A)+ PB)- P(ANB)
Remark. An alternative proof is provided by Theorems 44 and 4.5.

4-6-3. Extention of General Law of Addition of Probabilities. For n events
Ay, Az, ..., As, we have

P(UA)= EP@A)- IZ PANA)+ IXE PANANAY)

i=1 i=1 1Si<jsn 1Si<j<ks
—t (=D PANAN...NA) ..(4-6)
Proof. For two events A, and A,, we have
P(AVA)=P(A)+ P(A)- P(AiNA?) «(*)

Hence (4-6) is true forn = 2.
Let us now suppose that (4-6) is true for n = r, (say). Then

r r
P(UA)= X PA)- ZZPAiNA)+...+~ ')"‘P(A.nAgn...dA,)(
oo “

i=1 i=1 1Si< jsr )
Now
r+l r
P(UA,'): P[(U Ai)UAr#l]
i=1 i=1

= P( O A+ PA)-P( 'u A)NA )] ...[Using (*}]
i=1 i=1
r r

P(yv Ai)+ PA)-P[ U (AinA/,))]  (Distributive Law)
. o1

i=1 i=

r
I PA)- X P(A,‘(\Aj)'l' .es
i=1 1Si<jsSr

e+ (- l)".l P(A[,ﬁAzﬁ...hA')"’ P (Ars1)

“PLU AAAny] ..[From (+#)]

in]
r+l
}.‘.P(A.)- X P'(A,'(\Aj)'l- eor
i=1 1Si<jsr
+(-1)Y"' PANAN..NA)



4.32 Fundamentals of Mathematical’ Statisticy

—[EP(A AA)- IZ PAiNANAL)
i=1 1<i<jsr

+.+(- 1)" PANAN...NANA.LY)] ...[From (**)]

r+1
= P(‘uA.-)- ?’(A,)— [ ZZ PlAinA)+ EP(A NAG)]
i=1 i=1 151<;Sr i=1
A EDPAINAN...NAG)]
r+l
= ZPA)- X P(ANA)
i=1 lSl(]S(’+l)
' s+ (=1) P(AinA2N.... N A;yy)
Hence if (4-6) is true for n=r, 1t is also true forn=(r+1). But we have proved
in (*) that (4-6) is true for n=2. Hence by the principle of mathematical induction,
it follows that'(4-6) is true for all positive integral values of n. .

Remarks. 1. If we write

P(A.‘)=p.',P(A,‘ﬂAj)=p';j,P‘(AaﬂAjﬁAk)=pip
and soon and

Si= )-'-P.— EP(A.)
i=1 i=1

S:= I p;= II PANA)

18i<jsSn 1Si<jsna
S3= IIX D and soon,
1Si<j<ksn
then
n
P( v A,')= Si— S+ S35~ ...+ (“ 1).-18, ...(4'60)

i=1
2. If all the events A;, (i=1, 2, ..., n) are mutually disjoint then ( 4-6 ) gives

P( u A)= ).‘. P (A)
i=1 i=
3. From practical point of view thc theorem can be restated in a slightly
different form. Let us suppose that an event A can materialise in several mutually
exclusive forms, viz., A;, A, ..., A, which may be regarded as that many mutuatly
exclusive events. If A happens then any one of the events A;, (i=1, 2, ..., n) must
happen and conversely if any one of the events A;, (i = 1, 2, ..., n) happens, then A
happens. Hence the probability of happening of A is the same as the probability of
happening of any one of its (unspecified) mutually exclusive forms. From this point
of view, the total probability theorem can be restated as follows:
The probability of happening of an event A is the sum of the. probabilities of
happening of its mutually exclusive forms Ay, Ay, ..., As. Symbolically,
P@A)=P @A)+ P(A)+ ... r P(A) (4-6b)
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The probabilities P(A,),; P(A2), ..., P(A,) of the mutually exclusive forms of
A are known as the partial probabilities. Since P(A) is their sum, it may be called
the total probability.of A. Hence the name of the theorem.

Theorem 4-7. (Boole’s ineguality) For n events A, A, ..., A,, we have

(@) P( nA.)z zP(A.) (n-1) ) 4T

i=1 i=

(b) P u A)< }.‘. P (A) . . T, ..(47a)
i=1 i=1
[Delhi Univ. B.Sc. (Stai Hons.), 1992, 1989]
Proof. (a) P(AilVA)=PA)+ P(A))- P(AiNnA)<1
= PANA)2P(A)+ P(A) -1 *)
Hence (4-7) is true for n=2.
Let us now suppose that (4-7) is true for n=r (say), such that

P(nA)> £ PA)~(r-1) : (**)
i=1 i=1
Then
P( n A)= P ( n A nAm)
i=1 i=1
>P( r'x A)+ P(Ar) -1 [i’rom(*)]
i=1
2, z:P(A.) (r-1)+ P(A,s1)-1 [From (*#*)]
r+1
= P( n A.)z L PA)-r : '
i=1 i=1
= (47)istrue forn=r+1also. !

The result now follows by the principle of mathematical induction.
(b) Applying the inequality (4-7) to the events A1, Ay, ..., Ax, we get
PAGNAN...0AY)2[PA)+P@A)+...+P @A) -(n-1)
=(1-PANI+[1-PA)]+ ... +[1 - P(A)] - (n-1)
=1-P(A)-P(A)~-...- P (A)
= PA)+PA)+ ..+PA)Z1-PA)NA:N...NA).
=1-P @A UA;U... UA.
=PAUVAU...VA)
= PAVAU...VA)SPA)+PA)+...+P(A)
as desired.
Aliter for (b) i.e., (4-7a). We have
P(A1UA3)=P (A)+P(A)-P (AN A)
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<P (Al) +P (Az) [cP@AIN Az) 20 1 m(‘tt)
Hence (4-7a) is true forn = 2. ’
Let us now suppose that (4-7a) is trué for n=r, (say), so that
P(UA)S I PA) (rare)
i=1 i=1

Now

r+1 r
P( v A.)‘: P( (V) A,‘UAM-I)

i=1 i=1
SP( U A)+P (@A) [Using (+++)]
i=1
S I PA)+P (@A) [Using (+++%)]
i=1
r+

r+1 1
= P( |V A,‘)S z P(A.)
i=1 i=1
Hence if (4-7a) is true for n=r, then it is also true for n=r+1. But we have
proved in (***) that (4-7a) is true for n=2. Hence by mathematical induction we
conclude that (4-74) is true for all positive integral values of n.
Theorem 4-8. For n events A,, A, ..., Aa,

a n' N
P[ U A12 X PA)- I PANA)
i=1 i=1 1Si<jsn
[Dethi Univ. B.Sc. (Stat Hons.), 1986]
Proof. We shall prove this theorem by the method of induction.
We know that
PA1VAUA)=P(A)+P(A)+P(A))
~[PA:NA)+ P(A2n As) + PAsNAD] + P(Ar N AN Ay)

3 3 .
= P( VA)2 L P(A)- IX P(AinA)
i=1 i=1 1Si<js3
Thus the result is true for n=3. Let us now suppose that the result is true for
n=r (say), so that
r
P( wA)2
ol

L PA)- IX P(ANA) «(*)
i=1 18i<jsr
Now

r+1 r
P( .U AY=P( U AUA )

i=1 i='1

—P( GAY+P A) =PI U A)AArr]
Y .
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)+P(Ay¢[) P\[ U (AnnAr¢l)]

<

1
Iz P(A.('\A,)
1Si<j<r
+PAD-P[ OANAL)]
i=1
[From (*)}

r
P(u
[ P(u)-

ll My .

w(*%)

From Bool2’s inequality. (éfji Theorem 4~.7 page 4-33), we get
r r
P[ |9 ‘(A;ﬁA,41)] < 2 P(A,‘('\A,4|)

= -P u (AinA 02 - Z P(A.nAnl)
i=1 i=1
~. From (**), we get
r+l1 r+1 r
P(UA)2 Z PA)- XX PANA)- I PANA.)
i=1._ 1Si<jsr

r+1 r+1
= P(UA)Z EPA)- I PANA)
i=1 i=1 1Si<js r+l
Hence, if the theorem is true for n = r, it is also true for n = r +1. But we have
seen that the result is true for n = 3. Hence.by mathematical induction, the result

is true for all positive integral values of n. module 3
4-7. Multiplication Law of Probability and Conditional Probability

Theorem 4-8. For two events A and B
P(ANB)= P(A).PB | A), P(A)>0 } ' 48

= P(B).PA | B), P(B)>0
where P(B | A) represents the conditional probability of occurrence of B when the
event A has already happened and P(A|B) is the conditional probability of

happening of A, given that B has already happened.
n(AnB) *)

Proof.
B .
Pay="4 . pigy=-28) 1y panB)=
(A) (S 8 2 (5) ( ) 7S
For the conditional event A | B, the favourable outcomes must be one of the
sample points of B, i.e., for the event A | B, the sample space is B and out.of the

n(B) sample points, n(AnB ) pertain to the occurrence of ‘the event A. Hence

_n(AnB)
Rewritjng.(‘)’ we get
2B) n@ANCB)_ pp palB

PANnB)= n(S) n @)


module 3
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Similarly we can prove :
_nA) r@AnB) _
PANB)= nG) " ) - PA) . PB]A)
_P@ANnB) P (AnB)
Remarks.1. P(B|A)= P @) and P(A|B)="+ P @)

Thus the conditional probabilities P (B | A) and P (A | B) are defined if and
only if P(A)= 0 and P(B)# 0, respectively.
2, (i) For P(B8)>0, P(A|B)<P(A)
(i) The conditional probability P (A | B) is not defined if P (B) = 0.
(iii) P (B | B)=1. v
3. Multiplication Law of Probability for Independent Events. If A and B
are independent then
P(A|B)y=P(A) and P (B|A)=P (B)
Hence (4-8) gives :
P(AnB)=P (A) P B) .(4-8a)
provided A and B are independent.

4.7-1. Extensiori of Multiplication. Law of Probability. For n events
A, Az, vy A., we have
PAINAN...NA)=PA)P A A)PAs|AINA)..

x P(A | AiNAzN...NA,))  ..(48D)
where P(Ail Ain A, nA,) represents the conditional probability of the
event A; gzven that the events Aj, Ay, ..., A have already happened.

‘Proof. We hive for three events A, Az, and A3
PAINANnA)= Pl[AIN(A2NA3)]
= P(A)P(A2n4As | Ar)
= P(Ap) P (A2 | A) P (A3 ] AlnA,)
Thus we find that (4-8b) is true for si=2 and n=3. Let us suppose that (4-86) is
true for n=k, so that
PAINAN...NA)=P@A) PA ] A) P4 A nAy)
CPAAAAN. ALY
Now
PlAinA:Nn...nA)YNAL=PAiNA2N...NAY
, XP(Ah.l‘lAlﬁAzﬁ...ﬁA&)
=PA) PA:lA)...PAAINAN...NA)
‘ XP(AtnlAlﬁAzﬁ...ﬁAl)
Thus (4-8b) is true for n=k+1 also. Since (4:8b) is true for n=2 and ri=3;by
the principle of mathematical induction, it follows that (4-8b) is true for all positive
integral values of n.
Remark. If A, A,, ..., A, are independent events then
P(A; |Ap= P (Az) P(As | AinA)= P(Ay)
.P(A, |A1f\Az(\ .NA. )= P (A)
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Hence (4-8b) gives :
PANAN...0nA)= P(A)P(A2)...nP(A), ..(4-8¢)
provided Ay, A, ..., A, arc indcpendent.
Remark. Mutually Exclusive (Disjoint) Events and Independent Events.
Let A and B be mutually exclusive (disjoint) events with positive probabilities
(P (A)>0, P (B)>0),i.e., both A and B are possible events such that

AnB=¢ = PANB)=P@®)=0 i)
Further, by compound probability theorem we have
P(AnB)=PA).P@B|A)=PB)P(A|IB (i)
Since P (A)#0; P (B)# 0, from (i) and (ii) we get
P@AI|B) =0%P(A), P@B|lA)=0=P(@B) ...(iii)

= A and B arc dependént events.

Hence two possible mutually disjoint events are always dependent (not inde-
pendent) events.

However, if A and B are independent events with P (A)>0 and P (B)>0,
then

PANnB)=PA) PB)#0

= A and B cannot be mutually exclusive.

Hence two independent events (both of which are possible events), cannot be
mutually disjoint.

472. Given nindependent events Aj, (i =1,2,...,n) with respective prob-
abilities of occurrence p;, to find the probability of occurrence of at least one
of them.

We have

PA)Y=p; = PQ@)=1-p;;i=1,2, ..n

(A UAU...UA) = AinAn....nA,) (De-Morgan’s Law))
Hence the probability of happening of at least one‘of the events is given by

PAVAVU...UA)=1-P(A VAU .. UAY) «(*)
=1-PAINAN..NA) )
=1—P(Z|) P (Zz) .'..P(Zn) cee (*%)

[c.f. Theorem 4-14 page 4-41°
1-[A-p)A=p2)...(1-pJ]

n n n
Lpi- LL (pip)+ XL pip;py)
i=1  ij=1 ij k=1
i<j i<j<k
4 = Grp2e. pa)]
Remark. The results in (*) and (+*) are very important and are used quite often
in numerical problems. Result (*) stated in words gives:
P [happening of at least one of thie events A,, A, ..., As ]
=1 — P (none of the events A, A, ..., A, happeis)
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or equivalently,
P (none of the given events happens}
=1 — P {at least one of them happens]).
Theorem 4-9. For any three events A, B and C
PAUB|C)=PAICO)+PBIC)-P(ANB|C)
Proof. We have
P(AuUB)=PA)+ P(B)- P(ANB)

=SP(ANC)UBNC)]=PANC)+ PBNC)-P(ANBNC)

Dividing both sides by P (C), we get
P[(ANC)u (BN Q)] ___P(AnC)+ﬂBnC)—P(A NBn.C) P(C)>0

P(C) P(C)
=P(AnC)+P(BnQ_ﬂAanQ
P(C) PC) P(C)
= ﬂ(’“,jfg)“c] =P(A|C)+ P(B|C)-P(ANB|C)

= P[(AUB)|C]=PA|C)+P(B|C)-P(ANB|C)
Theorem 4-10. For any three events A, B and C
PANB|CO)+ PANBI C)=PA| O
Proof. PANB| O+ P(ANB|O)
_ PANBN C) + PAANBAC)

PC) P(C)
_ PANBNC)+ PANBANC)
P (C)
_PANnC)_
="PO - PA|C)
Theorem 4:11. For a fixed B with P (B)>0,P (A |B) is a probability
function. [Delhi Univ. B.Sc. (Stat. Hons.), 1991; (Maths Hons.), 1992]
Proof.
(i) P(A] B)= ”—(;,%2 >0
y _P(SnB) _P@B) _
(ii) PS| B)= PB) "P®) - 1

(iii) 1f {A.) is any finite or infinite sequences of disjoint events, then
P[(L;! AJ)NB] P[(knJ As.B)]

PIQ AR = — 5 =" F@
Y, P(A.B)
p P (A.B
- = 260 T rn

Hence the theorem.
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Remark. For given B satisfying P(B) > 0, the conditional probability
P[|B] also enjoys the same properties as the unconditional probability.

For example, in .the usual notations, we have:

@ Po|BI=0

@iy P[A|Bl=1-P{4|BY

n n
(i) P[,-:’n A; | B] =’,§l P[4;B],

where 4,, 4,, ..., A, are mutually disjoint events.

(v) PA,vA4,|B)=PA,|B)+P(A4,]|B)- P, 4,]|B)

) IfEcF, then P(E|B) < P(F|B)
and so on. :

The proofs of results (iv) and (v) are: given in theorems 4-9 and 4-13
respectively. Others are left as .excrcises to the reader.

Theorem 4-12. For any three events, A, B and C defined on the sample
space S such that B c C and P(4) > 0,

P(B|A4) s P(C|4)
P(CnA)
Proof. P(C|4) = —W (By definition)

t

P[B(\CmA)u(EmCm A)
P(4)

PIBACnd)  PBNCnA) .
P(A) P(4) (Using axiom 3)

]

P{(BAC|A)+(BACA A)]

Now BcC = BnC=8

P(C|A) =P(B|4)+ P(BAC|A)

= P(C|4) > P(B|A4)

4:7-3. Independent Events. An event B is said to be independent (or
statistically independent) of event A, if the conditional probability of B given
4ie., P (B | A)is equal to the unconditional probability of B, i.e., if

P(B|A4) =P (B
Since
PANB)Y=PB|A)YP@A)=PA|B)P (B
and since P (B | 4) = P (B) when B is independent of 4, we must have
P (4| By = P (4) or it follows that 4 i$ also independent of B. Hence the
events 4 and B are independent if and only if .
PAnNB)y=P(4)P(B) ..(49)

4-7-4. Pairwise Independent Events

Definition, A4 set of events 4\, Ay, ..., A,, are said to be pair-wise independent
i PAUNA)=PU)IPA) v i=] -(4:10)
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i 4.7-5. Conditions for Mutual Independence of n Events. Let S denote the
sample. space for a number of events. The events in S are said to be mutually
indepdendent if the probability of the simultaneous occurrence of (any) finite
number of them is equal to the product of their separate probabilities:
If A, A,, ..., A, are n events, then for their mutual independence, we should
have
() P(AinA;) = P(A)P(4), (i#);i, j=12,..,n)
(i) PAinANA)=PA)PA)P A),(G#j2k;i j k=1,2,..,n)

P(AiNnA:Nn...NnA)=PA)P(AY) ... P(A,)
It is interesting to note that the above equations give respectively
"Cs, "Cs; ..., "C. conditions to be satisfied by A,, 4., ..., A,.
Hence the total number of conditions for the mutual independence of
A1, Ay, . Ay is "C2+"Cy+ .t "C.
Since "Co+ "Cy + "Cz + ..+ "Ca = 2", we get the required number of conditions
as (2"-1-n).
In particular for three events A;, A2 and As, (n=13), we have the following
2% =+ 1 = 3 =4, conditions for their mutual independence.
P(AinAz) = P(A) P(Ar)
P(A2nAy) = P (A) P(Ay)
P(A1nAs) = P(A) P(As)
. P(A1NA2NAs) = P(A) P(Ay) P(As) .(411)
Remarks. 1. It may be observed that pairwise or mutual independence of
events Ay, A, ..., A,, is defined only when P (4% 0, fori=1,2, ..., n.
2. If the events A and B are such that P (A)#0, P(B)#0 and A is
independent of B, then B is independent of A.

Proof. We are given that
P(A|B)=P (A)
PANB)y _
= @ P@
= P(A(\B)=P(A)P(B)
PBNA) _
= =P (B
P& [P (A)#0 and AnB=BNA]
= P (B|A)=P (B),

which by definition of independent events, means that B is independerit of A.
3. It may be noted that pairwise independence of events does not imply their
mutual independence. For illustrations, see Examples 4-50 and 4-51.

Theorem 4-13. If A and B are independent events then A and B are also
independent events.
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Proof. By theorem 4.4, we have
P(ANnB)=P(A) - P(ANB)

=P(A) - P(A)P(B) [ AandB are independent ]
=P(A)[1-P(B)]
=P(A) P(B)

= A and B are independent events .

Aliter. P(ANB)=P (A) P (B)=P (A) P (B|A)=P (B)P (A|B)

ie, P(@B|A) =P (B) = Bisindependent of A.

also P(A|B) = P(A) = Aisindependent of B.

Also P (B{A)+P@BIA)=1 = PB)+ P(BI1A)=1

or PB|A)=1-PB)=P (B)

B is independent of A and by symmetry we say that A is independent of
B. Thus A and B are independent events.

Remark. Similarly, we can prove thatif A and B ar¢ independent events then
A and B are also independent events.

Theorem 4-14. If A and B are independent events then A and B are also
independent events.

Proof. We are given P (AN B)=P (A) P (B)

Now PANB)=PATB)=1-P(AUB)
1-[(P(A)+P(B)=-P(ANB)]
1-[P(A)+P(B)-P(A)P(B)]

1- P(A)-P(B)+ P(A)P(B)
[1-P(B)]I-P(A)[1-P(B)]

=[1-P(A)I[1-P(B)] =P(A)P(B)
~. A -and B are independent events .
Aliter. We know
P(AIB) + P(A|B)=1
P(AIB)+P(A)=1 _ (c.f. Theorem 4-13)
P(A|B)=1-P(A)=P(A)

A and B are independent events.

Theorem 4-15. If A, B, C are mutually independent events then A U B and C
are also independent.

Proof. We-are required to prove:

P[(AUB)NC]=P(AUB)P(C)

LHS. = P[(ANC)U(BNC)] [Distributive Law]

=P(ANC)+P(BNC)~-P(ANBNC)
=PAPCy+PBYP) - PAPBYP(C)

[ A, B and C are mutually independent ]
=P(C)[P(A)+ P(B)-P(ANB)]

=
=
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=P(C)P(AuB) = RHS.
Hence (AU B ) and C are independent.
Theorem 4-16. If A, B and C are random events in a sample space and if A,
B and C are pairwise independent and A is independent of (B L C)), then A, B and
C are mutually indepéndent.
Proof. We are given
P(AnB)=P(A)P(B)
P(BNnC)=P(B)P(C) ™)
P(ANnC)=P(A)P(C)
P[ANn(BUC)]=P(A)P(BUC)

Nc v P[ANn(BUC)]=P[(ANB)u(ANnC)]
=P(ANB)+ P(ANCY - P[{AnB)N(ANC)]
=P(A).P(B)+P(A).P(C)-P(ANBANC) ..(**)

and PAPBUC)=PAIPB)+P(C)-PBNO)
=PA).PB)Y+P(A)P(C)-PAYPBNC) ..(**¥)

From (*#) and (***), on using (*), we get

PANBNC)=PA)YPBNC)=P(A)PB)P (O)
Hence A, B, C are mutually independent.
Theorem 4-17. For any two events A and B,
P(ANB)Y<P(A)SP(AUB)<P(A)+P(B)
[Patna Univ. B.A.(Stat. Hons.), 1992; Delhi Univ. B.Sc.(Stat. Hons.), 1989]
Proof. We have
A=(ANnB)U(ANB)

Using axiom 3, we have

P(A)y=P[(ANB)U(ANnB)=P(ANnB)+P(ANB)

Now P[(AnB)20 (From axiom 1)
P(A)2 P(ANB) (%)

Slmdarly P(B)2 P(ANB)

= P(B)~-P(ANnB)20

Now P(AUB)=P(A)+[P(B)-P(ANB)] D)

P(AUB)2P(A) = P(A)SP(AUB) w(*%)

Also P(AUB)SP(A)+ P(B) [From (**)]

Hence from (*), (**) and (**+), we get
P(ANB)SP(A)<P(AUB)XP(A)+ P(B)

Alliter. Sincé A N B c A, by Theorem 4-6 (ii) page 4-30, we get
P(ANB)<P(A).

AlsoAc(AuB) = PA)<P(AUB)
P(AUB)=P(A)+P(B)-P(ANB)

Combining the above results,we get
P(ANB)SP(A)<S P(AUB)S P(A)+ P(B)
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Example 4-12. Two dice, one green and the other red, are thrown. Lei A be
the event that the sum of the points on the faces shown is odd, and B be the event
of at least one ace (number ‘1°).

(a) Describe  the (i) complete sample space, (ii) events A, B, B, AN B,
A UB, and AN B and find their probabilities assuming that all the 36 sample
points have equal probabilities.

(b) Find the probabilities of the events :

@) (AUB) (i) (ANB) (ii))(ANB) (iv(@ANB) (vVAANB) (vi(AuUB)
Vi) AOB) (Vi) An(AUB) (X)) AU(ANB)(x) (A [Byand(B | A),and
(d)(A|B) and(B17A)..

Solution.,(a) The sample space consists of the 36 elementary events .

(1,1) 5(1,2)5(1,3) ;(1,4);(1,5) ;(1,6)
(2,1) 5(2,2) :(2,3) ;(2,4):(2,5);(2,6)
(3,1) 5(3,2):(3,3) ;(3,4);(3,5):(3,6)
(4.1) 5(4,2):(4,3) ;(4.,4):(4,5);(4.,6)
(51); (52); (5,3);(5,4);{(5,5);(5,6)
(6,1) ; (6,2);(6,3) ;(6,4); (6 5):(6,6)
where, for example, the ordered pair (4, 5) refers to the elementary event that the
green die shows 4 and and the red die shows 5.
A = The event that the sum of the numbers shown by the two dice is odd.
={(1,2);(2,1);(1,4);(2,3):(3,2);(4,1);(1,6):(2,5)
(3,4):(4,3):(5,2);(6,1);(3,6); (4,5); (5,4); (6,3)
(5,6);(6,5)) andtherefore

P(A)= "i’g %

B = The event that at least one face is 1,
=((L1) ;(1L,2):(L,3);(1,4);(L5); (1,6)
(2,1) ;(3,1);(4,1) ; (5,1); (6,1) ) and therefore

_hB _11
PB= 1= 36

B = The event that each of the face obtained is not an ace.
={(2,2);(2,3);(2,4);(2,5); (2,6); (3,2); (3,3);
(3,4); (3,5):(3,6); (4,2);(4,3); (4,4) :(4,5);
(4,6); (5,2) 5 (5.3);5 (5,4) ;.(5,5)5 (5,6); 6,2) ;
(6,3);(6,4); (6,5); (6,6) ) and therefore

B2
P®B)= "= 36

A-n B = The event that sum is odd and at least one face is an ace.
={(1,2);(2,1);(1,4); (4 1) (1,6);:(6,1))

. P(ANB)= ﬂ’%l 3—6—3
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AUB ={(1,2);(21):(1,4):;(2,3);(3,2):(4,1);(1,6);(2,5)
(3,4):(4,3):(5,2):(6,1); (3,6); (4,5);(5,4);(6,3)
(5.6);(6.5);(1,1);(1,22;);(1,5);(3,1);(5.1)}

_nhAuB) 23
P{AuUB)= nS) 36

AnB =((23):(3,2);(2,5):(3,4);(3,6);(4,3);(4,5):(5.2)

(5,4):(5,6); (6,3): (6 5)]

, n(AnB) _
P@4nB=="5 36 3
(b) (i) PAUB)= PA@AB)=1- P(ANB)= 1-%=%
(ii) PAENB)=P@ETB)=1-PAUB)=1-2=2
(iii) PANB)= P(A)- P(AmB)—l—s--a%='—3:=%
(iv) P@&rB)= P (B)- P(AnB)——_%=%
v) PAEAB)=1- PANB)=1-¢=3
(vi) P@AuUB)= P&)+ P(B)- P(ANB)
=[(1-18),1_5_2
36 36 36 3
(vii) PAETB)=1- PAUB)=1-2=3
(viii) P[AN(AUB)=PIANA)U @ NB)
=P@AnB)=% [ ANA=¢]

(ix)P[AU@NB)]= P(A)+ PANB)- P(Anxnn)
= P(A)+ P(KnB)=—+ 3.3

36 36
PANB)_ %

—P@B) 16 1
_P@ANB)_ %6 _6_1
P@®la= P(A) 185 18 3
PANB)_ We6_13

|a\

(x) PA|B)=

—

v

(=) PAE|B)= P (B) "2%6‘ 35 .
P@In-CEER- e 1

Example 4-13. Iftwo dice are thrown, what is the probability that the sum is
(a) greater than 8, and (b) neither 7 nor 11?
Solution. (a) If S denotes the sum on the two dice, then we want P(S > 8).
The required event can happen in the following mutually exclusive ways:
(i)$=9 ()S=10 (iii)S=11 (iv) S=12.
Hence by addition theorem of probability
PS>8)=P(S=9)+PS=10)+P@S=11)+P(S=12)
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1n a throw of two dice, the sample space contains 6> =36 points.
The number of favourable cases can be enumerated as follows:
§=9:(3,6), (6,3),4,5),(5,4), i.e., 4 sample points.

P(S=9)=
$=10: 4,6),(64),(5,5), ze,3sample points.
P@S= 10)_—
S=11: (5,6), (6,5), ie., 2sample points.
P(S—ll)_
S=12: (6,6), i.e., 1 sample point.
P(S=12)= 5
P(S>8)—§g+ %-r %-r% '—32=%

(b) Let A denote the event of getting the sum of 7 and B denote the event of
getting the sum of 11 with a pair of dice.
§=7 :(1,6), (6,1),(2,5),(5,2),(3,4), (4,3), ie, 6distinct sample
points.

P(A)=P(S=‘7)=—6-=%
$=11:(5,6), (6,5), P(B)=P(S= n)—-ll8

~. Required probability= P(ANB)= 1- P(AUB)
=1-[PA)+ PB)]

(. A and B are disjoint events )
P N 1
6 18 9 ‘

Example 4-14. An urn comains 4 tickets numbered 1, 2, 3, 4 and another
contains 6 tickets numbered 2, 4, 6, 7, 8, 9. If one of the two wrns is chosen at
random and a ticket is drawn at random from the chosen urn, find the probubzhae:
that the ticket drawn bears the number (i) 2 or 4, (ii) 3, (iii) 1 or 9

[Calicut Univ. B.Sc.,1992]
Solution. (i) Required event can happen in the following mutually exclusive
ways:
(I) First um is chosen and then a ticket is drawn.
(II) Second umn is chosen and then a ticket is drawn.
_ Since the probability of choosing any urn is 12, the required probability ‘p’ is
given by
p=P(I)+ P(ll)
1.2. 1.2 5

2734 2% 12
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" o S SO U | 1

(ii) Requiréd probability = 2>< 4+ 2>< 0= 3
(- m the 2nd um there is no ticket with number 3)

1.1, 1.1 §

(iii) Required probability = x 4+ 2x 6= 2

Example 4-15. A card is drawn Jfrom a well-shuffled pack of playing cards.
What is the probability that it is either a spade or an ace ?

Solution. The equiprobable sample space S of drawing a card from a well-
shuffled pack of playing cards consists of 52 sample points.

If A and B denote the events of drawing a ‘spade card’ and ‘an ace’
respectively then A consists of 13 sample points and B consists of 4 sample points
so that,

PA)=4 and P(B)=

The compound evem A N B consists of only one sample point, viz., ace of

spade so that,

PANB)= -

The probability that the card drawn is either a spade or an ace is given by
P(A UB)= P(A)+ P(B)- P(A N B)
13 b, 4 4 1
252" 13
Example 4-16.A box cor.lams 6red,4 white and 5 black balls. A person draws
4 balls from the box.at random. Find the probability that among the balls drawn
there is at least one ball of each colour. (Nagpur Univ. B.Sc., 1992)
Solution. The required event E that ‘in a draw of 4 balls from the box at
random there is at least one ball of each colour’, can materialise in the
following mutually disjoint ways :
(i) 1 Red, 1 White, 2 Black balls
(ii) 2 Red, 1 White, 1 Black balls
(iii) 1 Red, 2 White, 1 Black balls.
Hence by the addition theorem of probability, the required probability is given
by

PE)= P@)+ P @)+ P (i)
Cix*Cix3Cy . Cx*Cix*Ci . %G ¥iCax’C
= S + 5 + It S—
C4 C4 C4
= e, [6x4x10+ 15x4x5+ 6x€x5]
4
41
= Tsxiax13x12 [240+300+180]
24 x 720

= xlaxp - 092P
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Example 4-17. Why does it pay to bet consistently on seeing 6 at least once in
4 throws of a die, but not on seeing a-double six at least once in 24 throws with two
dice? (de Mere's Problem).

Solution. The probability of getting a ‘6.” in a throw of die =1/6.

~. The probability of not getting a ‘6 * inh a throw of die

=1-1/6 =5/6.

By compound probability theorem, the probability that in.4 throws of a die no
‘6’ is obtained = (5/6)"

Hence the probability of obtaining ‘6’ at least once in 4 throws of a die
= 1-(5/6)" =0516

Now, if a trial consists of throwing two dice at a time, then the probability of
geuting a ‘double’ of ‘6’ inatrial =1/36.

Thus the probability of not getting a ‘double of 6 * in a trial = 35/36.

The probability that in 24 throws, with two dice each, rno ‘double of 6’ is
obtained = (35/36)*

Hence the probability of getting a ‘double of -6’ at least once in 24 throws
= 1-(35/36)* = 0-491.

Since the probability in the first case 1s greater than the probability in the
second case, the result follows.

Example 4-18. A problem in Statistics is given to the three students A8 and
C whose chances of solving itare 1/2,3 /4 ,and 1 /4 respectively.

What is the probability that the problem will be solved if all of them try
independently? [Madurai Kamraj Univ, B.Sc.,1986; Delhi Univ. B.A.,1991]

Solution. Let A, B, C denote the events that the problem is solved by the
students A, B, C respecuvely Then

P(A)- = P(B)— = and P(C\— -

The problem will bc solved if at least one of them solves the problem. Thus
we have to calculate the probability of occurrence of at least one of the three events
A,B,C,ie,P(AUBUC).

PAUBUC)=PA)+PB)+P(C)-P(ANnB)~-P(ANC)
-PBNC)+P(ANBNC)
=PA)+PB)+P(C)-PA)PB)-P(A)P(C)
-P@BYP(C)+ P(APB)P(C)

(' A,B,C areindependent events. )

~1,3,1_ 13 31

27378724 T 44
S U R S A §
2°4 T 2°4 "3

<}
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Aliter. P(AUBUC)=1- P(AUBUC)

1-P(ANBNT)

1- P(A)P(B)P(C)

s

32
Example 4-19. If AN B = ¢, then show that «(¥)
P(A) £ P(B)
[Delhi Univ. B.Sc. (Maths Hons.) 1987)
Solution.  We have
. A= (ANB) U (AnB)
=¢uV(@ANnDB) [Using + )
=ANB
= AcB
=" P(A) < P(B)
as desired. -

Aliter. Since A N B = ¢, we have A c B, which implies that P (A) < P (B).
Example 4-20. Let A and B be two events such that

_3 =3
’ P@A)= 4 and P (B)= 3
show that
(a) P(AUB)Z%

(b) %SP(AnB)s

oo |

[Delhi Univ. B.Sc. Stat (Hons.) 1986,1988]
Solution. (i) We have

A cCc (AuB)
= P(A) £ PAUB)
= %_ P(AUB)
= PAUB) 2 %
(ii) ANnB c B
= PANB) £ PB)= % (Y
Also ;’(AU,B)= PA)+ PB)- P(AnB)< 1

= Z"’ %-'l <PANB)
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6+5-8

= —8 < P(ANnB)
= 2<p@nB) i)
From (i) and (ii) we get

3 <P(ANB) < 5

Example 421, (Chebychev' s Problem). What is the chance that two numbers,
chosen at random, will be prime to each other ?

Solution. If any number ‘@’ is divided by a prime number ‘r’, then the possible
remainders are 0, 1, 2, ...r-1. Hence the chance that ‘a’ is-divisible by r is 1/r
(because the only case favourable to this is remainder being 0). Similarly, the
probability that any number ‘b’ chosen at random is divisible by 7 is 1/r. Since
the numbers a and b are chosen at random, the probability that none of them is
divisible by ‘7’ is given (by compound probability theorem) by :

[1-—-‘-])( [1-1): [[-1j; r=2,3,517,...
r r r

Hence the required probability that the two numbers chosen at random are
prime to each other is given by

P=TIl (l— -:-T. where r is a prime riumber.
r

= ;6; (From trigonometry)

Example 4-22. A bag contains 10 gold and 8 silver coins. Two successive
drawings of 4 coins are made such that : (i) coins are repldced before the second
trial, (ii) the coins are not replaced before the second trial. Find the probability
that the first drawing will’ give 4 gold and the second 4 silver coins.

{Allahabad Univ. B.Sc., 1987]

Solution. Let A denote the event of drawing 4 gold coins in the first draw and
B denote the event of drawing 4 silver coins in the second draw. Then we have to
find the probability of P (AN B ). .

(i) Draws with replacement. If the coins drawn in the first draw are replaced
back in the bag before the second draw then the events A and B are indépendent
and the required probability is given (using the multiplication rule of probability)
by the expression

P(ANnB)=P(A).P(B) (%)

Ist draw. Four coins can be drawn out of 10+8=18 coins in '*C, ways, which
gives the exhaustive number of cases. In order that all these coins are of gold, they
must be drawn out of the 10 gold coins and this can be done in '°C, ways. Hence

P(A)= ‘004 / “C4
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2nd draw. When the coins drawn in the first draw are replaced before the 2nd
draw, the bag contains 18 coins. The probability of drawing 4 silver coins in the
2nd draw is given by P (B)= *C, / '*C..

Substituting in (*), we have

10c4 sc
P(ANB)= e, ﬁé

(ii) Draws without replacement. If the coins drawn are not eplaced back before
the second draw, then the events A and B are not independent and the required
probability is given by |

PANB)=PA).PB|.A) w(*4)

As discussed in part (i), P (A)= '"°C, / *C..

Now; if the 4 gold coins which were drawn in the first draw are not replaced
back, there are 18 — 4=14 coins left in the bag and P (B | A) is the probability of
drawing 4 silver coins from the bag containing 14 coins out of which 6 are gold
coins and 8 are silver coins.

Hence P@B|lAy="1c /"

Substituting in (**) we get

P l°C4 y 3C4
AnB)=". we, * T,

Example 4-23. A consignment of 15 record players contains 4 defectives. The
record players are selected at random, one by one, and examined. Those examined
are not put back. What is the probability that the 9th one examined is the last
defeciive?

Solution, Let A be the event of getting exactly 3 defectives in-examination
of 8 record players and let B the event that the 9th piece examined is a defective
one.

Since it is a problem of sampling without replacement and since there are 4
defectives out of 15 record players, we have

4 (11

3)%1s
e (15
, (¥)
P (B | A)="Probability that the 9th examined record player is defective given that

there were 3 defectives in the first 8 pieces examined.
=1/1,

since there is only one defective piece left amongthe remaining 15 - 8 = 7 record
players.

Hence the required probability is

_PANB)=P(4).PB A

P (A)=
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Example 4-24. p is the probability that a man aged x years will die in a year.
Find the probability that out of n men A, A, ...,A. each aged x , A, will dieina
year and will be the first 10 die. [Delhi Univ. B.Sc., 1985}
Solution. LetE;, (i=1,2,...,n) denote the event that A; dies in a year. Then
PE)=p,(i=1,2,..,n) and P(E:)=1-p.
The probability that none of n men A, Az, ..., A, dies in a year
=P(E NE:N...NnE)=P(E)P(E)...P(E)
(By compound probability theorem)

18
7 195

=(1-p)
- The probability that at least one of A,, Az, ..., A, dies in a year
=1-PENEN..NnE)=1-(1-p)

The probability that among n men, A, is the first to die is 1/a and since this
event is independent of the event that at least one man dies in a year, required
probability is

1 »
~[1-a-pr]

Example 4-25.The odds against Manager X settling the wage dispute with the
workers are 8:6 and odds in favour of manager Y settling the same dispute are
14:16.

(i) What is the chance that neither settles the dispuse, if they both try,
independently of each other?

(if) What is the probability that the dispute will be settled?

Solution. Let A be the event that the manager X will settle the dispute and B
be the event that the Manager Y will settle the dispute. Then clearly

PA=g=2 = PW=1-PE=2=2

8+6 7 7
=14 _ 1 =1- 16 _ 8
PB)=i=1 = PB)=1-PB)=y75= 15

The required probability that neither settles the dispute is given by :

=4 8 _ 32
P(AnB)=P(A) x P(B)=4x 2= 22

[Since A and B are indepencent => A and B are also independent]
(i) The dispute will be settled if at least one of the managérs X and Y settles
the dispute. Hence the required probability is given by:
P (AU B)=Prob. [ At least one of X and Y settles the dispute]
=1 - Prob. [ None settles the dispute]

=1- P(AnB)=1-2-1
=1-P(ANB)=1- 55= 1=



4.52 Fundamentals of Mathematical Statistics

Example 4-26. The odds that person X speaks the truth are'3:2 and the odds
that person Y speaks the truth are 5:3. In what percentage of cases are they likely
to contradict each other on an-identical point.

Solution. Let us define the events:

A : X speaks the truth, B : Y speaks.the truth

Then A and B represent the complementary events that X and Y tell a lie

respectively. We are given:

P@&)= 3+2° 5 P(Z)=1 575§
__5 __5 —q,.3_3
and P (B)= 5+3-8 = P(B)=1 8= 8

The event £ that X and Y contradict each other on an identical pomnt can
happen in the following mutually exclusive ways:

(i) X speaks the truth and Y tells a lie, i.e., the event A N B happens,

(ii) X tells alicand Y speaks the truth, i.e., the event A N B happens.

Hence by addition theorem of probability the required probability is given by:

P{E)= P@+ P(ii)= PANnB)+ P(ANB)

=P().P(B)+ P(A) P(B),
[Since A and B are independent ]
3.3.2_5 19
=3 X 8+ 5 X 8= 40-0475

Hence A and B are likely to contradict each other on an identical point in
47-5% of the cases.

Example 4-27. A special dice is prepared such that the probabilities of
throwing 1,2,3,4,5 and 6 points are :

1-k 142k 1k 14k 1-2% and 1+k
6’ 6 ' 6°' 6 6° 6

respectively. If two such dice are thrown, find the probability of getting a sum
equal 0 9. [Delhi Univ. B.Sc. (Stat. Hons.), 1988]

Solution. Let (x, y) denote the numbers obtained in a thrown of two dice, x
denoting the number on the first dice and .y denoting the number on the second dice.
The sum § = x+y =9, can be obtained in the following mutually disjoint ways:

(i) 3, 6), (ii) (6,3), (iii) (4,5), (iv) (5,4)

Hence by addition theorem of probability:

P§=9)=P(3,6)+P 6,3)+P@4,5)+P(5,4)
=P(x=3)P(y=6)+P(x=6)P(y=3)+P (x=4)P(y=5)
+P(x=5)P@y=4

since the number on one dice is independent of the number on the other dice.
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('I-k).(l+k) + (l+k).(l—/() + (l-+/()‘(l-2k)

w PS=9="¢ 6 6 6 6 6
L U=20 (+k
6 6

1+k ]
2 [_36_] [(1-k) + (1-2k)]

1 .
-1—8(l+k) (2 - 3k

Example 4:28. (a) A and B alternateiy cut a pack of cards and the pack is
shuffled after each cut. If A starts and the game is continued until one ciks a
diamond, what are the respective chances of A and B first cutting a diamond?

(b) One shot is fired from each of the three guns. E\, E,, E5 .denotethe events
that the target is hit by the first, second and third gun respectively. If
P(ED= 05, P(E)= 06 and P(Es)= 08 and. Ly, E; E;s are independent
events, find the probability that (a) exactly one hit is registered, (b) at least two
hits are registered.

Solution. (a) Let £, and £,, denote the events of A and B cutting a diamond
respectively. Then

PE)=PE)= =1 = PE)=PE)=3

If A starts the game, he can first cut the diamond in the following mutually
exclusive ways: -

(i) Ey happens, (ii) E, N E, N E, happens, (iii) E, N E,NE, NE; N Fy
happens, and so on. dence by addition thecorem of probability, the probability “p’
that A first wins is given by

p= P+ P @)+ P@ii)+... ...

=PE)+ PE NE,NEN+ PENENENENE)+...
P(E)+ PE)P(E)P(E)+ P(EYP([E)P(E)PE)PE)+...
(By Compound! Probability Theorem,

1,3 31,3333 1,
I i i ity RS
1
.4 _4
= 5 =7
16
The probability that B first cuts a diamond
=l—p=]-i‘=-3-
7 7
(b) We are given

P(E)= 05, P(E)= 04 and P (E;)= 02
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(a) Exactly one hitcan be registered in the following mutually exclusive ways;
(i) E, " E, N E, happens, (ii) E, N E, N E, happens, (iii) E; N E, N E; happens,
Hence by addition probability theorem, the required probability ‘p’ is given
by : — = —
d P=PENENE)+PENENE)+PE,NE,NE)
= P(E,)) P(Ey) P(E;) + P(E) P(E)) P(E;) + P(E)) P(E,) P(E3)
(Since.Ey, E; and E; are independent)
=05x04x02+05%x06x02+05x%x04x08= 0-26.
(b) Atleast two hitscan beregistered in the following mutually exclusive ways;
(i) Ey N E, N Ey happens (ii) E, N E, N E; happens, (iii) E; N E, N E, hap-
pens. (iv)E, N E; N E; happens.
Required probability
=P(Ey NE:NEy) + P(Ey N E; NE3) + P(E, N E; N E3) + P(Ey N E; N E5)
=05x06%02+0-5%x04x0-8+0-5%06x0-8+0-5x0-6x0-8
= 0-06+0-16+024 + 024 =0-70

Example 4-29. Three groups of children contain respectively 3 girls and 1
boy, 2 girls and 2 boys, and 1 girl and 3 boys. One child is selected at random from
each group. Show that the chance that the three selected consist of 1 girl and 2
boys is 13/32. (Madurai Univ. B.Sc.,1988; Nagpur Univ. B.Sc.,1991]

Solution. The required event of getting 1 girl and 2 boys among the three
selected children can materialise in the following three mutually disjoint cases:

Group No. — I I I
(i) Girl Boy Boy
(ii) Boy Girl Boy
(iii) Boy Boy Girl
Hence by addition theorem of probability,
Required probability = P (i) + P (if) + P (iii) ..(¥)

Since the probability of selecting a girl from the first group is 3/4, of selecting
a boy rom the second is 2/4, and of selecting a boy from the third group is 3/4, and
since these three events of selecting children from three groups are independent of
cach other, by compound probability theorem, we have

Nedx2y3_9

PO=4x3>3"73
Similarly, we have :

in=lx2yx3_3

Py =4x3>x3=3

o1 2 11

and P(m)—4><4><4—32
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Substituting in ( *), we get
Required probability = % . 3! ' 3! . D

EXERCISE 4 (b)
1. (a) Which function defines a probability space on S = (e1, ez, €5)

-
R I —
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Ans. p*(2-ph.

4.9. Bayes Theorem. If E\ E, ....E, are mutually disjoint events with
P(L)#0,(=1,2,...,n) then for any orbitrary event A which is a subset of

n
U E. such that P (A) > 0, we have
i=1
PE)PAIE:
P(Ei| A)=— E)r@lE) L, i=1,2,n. (412)
L PE)PAIEY
i=1
n
Proof. Sincc Ac v E; ,we have
i=1
n n
A=An(V E)= UANE) (By distributive law]
i=1 i=1
Since (AN E)cE; (i=1,2,...., n) are mutually disjoint events, we havc by
addition theorem of probability (or Axiom 3 of probability)

n n n
PA)=Plu (ANE)= EPANE)= TPE)PA|E), w(*)
i=1 i=1 i=1
by compound theorem of probability.
Also we have
PANnE)= PP (E | A)
PE|ay=" (.l’:(;f‘) - LEPALE) (From (+)]
LPE)PA|E)
i=1

Remarks. 1. The probabilities P (E,), P (E3). ..., P (E,) are termed as the ‘a
priori probabilities’ because they exist before we gain any information from the
experiment itself.

2. The probabilities P (A |E),i=1,2, ..., n are called ‘likelihoods’ becausc
they indicate how likely the event A under consideration is to occur, given cach
and every a priori probability.

3. The probabilities P(E; [ A), i= 1, Z, ..., n arccalled ‘posterior probabilities’
because they are determined after the resu}ts of the experiment are known.

4. From (*) we get the following important résult:

"If the events E,, E,, ..., E, constitute a partition of the sample space S and
P{E)#0,i=1,2,...,n,then for any event A in §' we have
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n n
P(A)= ZPANE)= ZPE)P(A|E) (412 4a)
i=1 i=1

Cor. (Bayes theorem for future events)

The probability of the materialisation of another event C, given

P(ClANE),P(CI|ANE),...,P(CI|ANE) is

IPEPAIEPECIEAA
P(C A== : (412 )

n
LZPE)P(A | E)
i
Proof. Since the occurrence of event A implies the occurrence of one and only
one of the events E,, E, ..., E., theevent C (granted that A has occurred) can occu
in the following mulually exélusive ways:
CnE,CNnE,...CNE,
ie., C=(CNnE)U({CNnE)L..U(CNE)
= ClA=[(CAE)|AIVI(CAE) | Alu...UICNE)|A]
 P(ClA=PUCAE)|IAl+P[(CAE) | Al+.+P[(CAE)| Al

LP(CAE)| A]

i=1

T P(E A PIC|(EnA)

i=1

Substituting the value of P (E; | A) from (*), we get

§ PE)PA|E) P(C|EnaA)
P(ClA)=l=l

§ PE)P(A | E)

i=1
Remark. It may happen that the materialisation of the event E; makes C
iddependent of A, then we have '
A P(C|E nA)=P(CI|E),
and the above.formula reduces to

§ PE)PATE) P(C|E)-
P(C| A==

..(4:12¢)

;:.P(E;)P(A | E)
i=1

The event C can be considered in regard to A as Futuré Event.
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Example 4-30. In 1989 there were three candidates for the position of
principal - Mr. Chatterji, Mr. Ayangar and Dr. Singh - whose chances of getting
the appointment are in the proportion 4:2:3 respectively. The probability that Mr.
Chatterji if selectéd would introduce co-education in the college is 0-3. The
probabilities of Mr. Ayangar and Dr. Singh doing the same are respectively 0-5
and 0-8. What is the probability that there was co-education in the college in 1990?

[Delhi Univ. B.Sc.(Stat. Hons.), 1992; Gorakhpur Univ. B.Sc., 1992]

Solution. Let the cvents and probabilitics be defined as follows:
A : Introduction of co-cducation
E, : Mr. Chatterji is sclected as principal
E; : Mr. Ayangar is sclected as principal
Es: Dr. Singh is sclected as principal.
Then

4
P (L) = g P (Ey)= % and P (Ey) =

O W

Pl E|)=l3—0, P(A|E2)='i§6 and P(A1E)=—=

8
10
o PA=PIANE)UANE)U(ANE)))
=PANE) + P(ANE) + P(ANEy)
PE)P@AIE) + P(ENPAIE) + P(EP(A| Ey)
4 3 2 5 3 8 23 :

"9 1079 107910 " 35
Example. 4-31. The contents-of urns 1, Il and Ill are as follows:
1 white, 2 black and 3 red balls,
2 white, 1 black and I red balls, and
4 white, S black and 3 red-balls.
One urn is chosen at random and two balls drawn. They happen Jo be white
and red. What is the probability that they come from urns 1, Il or Ill ?

{Delhi Univ. B.Sc. (Stat. Hons.), 1988]
Solution.Let E,, E,, and E3 denote the events that the urn I, IT and I11 is chosen,

respectively, and let A be the event that the two balls taken from the selected urn
are white and red. Then

P(E)= P (E)= P(Es)=~

3
1x3 1 2x1 1
= = — E,) = = —
P@A|E) ., 5.P(AI 2) i, 3
and PAIE)=223_2
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472
Hence -
P& A)= P(Ez)P(A|Ez)
EP(E)P(AlE)
=
1.1
_ .33 _ 35
375737373711
Similarly
- 3711 30
PEN T 1 T, 18
375737373711
1. 55 _ 30 _ 33
PEVA=1- 115 - 115 = Tig

Example. 4-32. In answering a question on a multiple choice lest a student
either knows the answer or he guesses. Let p be the probability that he knows the
answer and 1-p the probability that he guesses. Assume that a student who guesses
at the answer .Jill be correct with probability 1/5, where 5 is the number of
multiple-choice alterhatives. What is the conditional probability that a student
knew the answer to a question given that he answered it correctly?

[Delhi Univ. B.Sc. (Maths Hons.), 1985}

Solution. Lét us define the following-e¢vents:

E, : The student knew the right answér,

E: : The student guesses the right answer.

A : The student gets the right answer,
Then we are given

P(E)=p, P(E)=1~-p, PA|E)=1/5
Pl E,) = P [student gets the right answer given that he knew the right
answer] = 1
We want P (£, | A).
Using Bayes’ rule, we get : |
_ P(E):P(A El) _ pxl _ 52

PE | A= E @ £+ P PATE px1+(1p)x]) “4p+l

Example4-33./naboltfactory machinesA, B and C manufacture respectively
25%, 35% and 40% of the total. Of their output S, 4, 2 per cent are defective bolts.
A bolt is drawn at random from the product and is found to be defective. What are
the probabilities that it was manufactured by machines A, B and C?
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Solution. Let E,, E; and E; denote the events that a bolt.selected at ratidom
is manufactured by the machines A, B and C respectively and let E denote the event
of its being defective. Then we have

P (Er)=0:25, P (E2) =035, P (E5) =040

The probability of drawing a deféctive bolt manufactured by machine A is
P(E | E)=005.

Similarly, we have

P(E | E))=004,and P (E | E5)=002

Hence the probability that a defective bolt selected-at random is manufactured

by machine A is given by

P (E; |E) p(El)P(EIEI)
): P(E)P(E | E)
i=1
: 0-25 x 0-05 _125 25
025 %005 + 035 x 004 + 0-40 x 002~ 345 69
Similarly
P(Ez I‘E)= . O'3SXO‘(M‘ =1;49=§

025 %005+ 035 x0-04 + 0-40.x 002 345 69

PEIEy=1-PE | E)+PE | EI=1 =%

This example illustrates one of the chief applications of Bayes Theorem.

EXERCISE 4 (d)
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2. (a) Two groups are compcting for the positions on the Board of Directors
of a corporation. The.probabilitics that the first and second groups will wiii are 0-6
and 0-4 respectively. Furthermore, if the first group wins the probability of
introducing a new product is 0-8 and the corresponding probability if the second
group wins is 0-3. What is the probability that the new product will be introduced?
Ans. 06x08+04x03=06

(b) The chances of X, Y, Z becoming managers ol a certain company are 4:2:3,
The probabilities that bonus scheme will be introduced if X, Y, Z become managers,
are 03, 0-S and 0-8 respectively. If thie bonus scheme has been introduced, what is
the probability that X is appointed as thec manager.

Ans. 051

(c) A restaurant serves two special dishes, A and B to its customers consisting
of 60% men and 40% women. 80% of men order dish A and the rest B. 70% of
women order dish B and the rest A. In what ratio of A 10 B should the restaurant
prepare the two dishes? (Bangalore Univ. B.Sc., 1991)

Ans. PA)=P{(AnMUEAnNW)]=06x08+04%x03=06

Similarly P (B) =0-4. Required ratio =06 : 0-4 =3 : 2.

3. (a) There arc three ums having the following compositions of black and
white balls. .

Um 1: 7 white, 3 black balls
Um 2: 4 white, 6 black balls
Um 3.: 2 white, 8 black balls,

One of these umns is chosen at random with probabilities 0-20, 0-60 and 0-20
respectively. From the chosen urn two balls are drawn at random without replace-
ment. Calculate the probability that both these balls are white.

Ans. 8/45. (Madurai Univ. B.Sc., 1991)

(b) Bowl I contain 3 red chips and 7 blue chips, bowl 11 contain 6 réd chips
and 4blue chips. A bowl is selected at random and then 1 chip is drawn from thiis
bowl. (i) Compute the probability that this chip is red, (i) Relative to the hypothesis
that the chip is red, find the conditional probability that it is drawn from bowl I1.

[Delhi Univ. B.Sc. (Maths Hons.)1987]

(c) In a factory machines A and B are producing springs of the same type. Of
this production, machines A and B produce 5% and 10% defective springs,
respectively. Machines A and B produce 40% and 60% of the total output of the
factory. One spring is selected at random and it is found to be defective. What is
the possibility that this defective spring was produced by machine A ?

[Delhi Univ. M.A. (Econ.),1986]

(d) Um A contains 2 white, 1 black and 3 red balls, um B contains 3 white, 2

black and 4 red balls and urn C contains 4 white, 3 black and 2 red balls. One um
is chosen at random and 2 balls aré€ drawn. They happen to be red and black. What
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is the probability that both balls came from urn ‘B’ ?
[Madras U. B.Sc. April; 1989)

(e) Um X, X, X3, each contains S red and 3 white balls. Ums Y, Y, each
contain 2 red and 4 white balls. An umn is selected at random and a ball is drawn.
It is found to be red. Find the probability that the ball comes out of the umns of the
first type. [Bombay U. B.Sc., April 1992]

(P Two shipments of parts are received. The first shipment contains 1000 parts
with 10% defectives and the second shipment contains 2000 parts with 5%
defectives. One shipment is selected at random. Two parts are tested and found
good. Find the probability (a posterior) that the tested parts were selected from the
first shipment. [Burdwan Univ. B.Sc. (Hons.), 1988]

(g) There are three machines producing 10,000 ; 20,000 and 30,000 bullets
per hour respectively. These machines are known to produce 5%, 4% and 2%
defective bullets respectively. One bullet is taken at random from an hour’s
production of the three machines. What is the probability that it is defective? If the
drawn bullet is defective, what is the probability that this was produced by the
sccond machine? [Delhi Univ. B.Sc. (Stat. Hons.), 1991]

4. (a) Three urns are given each containing red and white chips as indicated.

Um1:6red and 4 white.
Um2:2red and 6 white.
Um3:1red and 8 white.

(i) An umn is chosen at random and a ball is drawn from this urn. The ball is
red. Find the probability that the um chosen wasum [ .

(ii) An umn is chosen at random and-two balls are drawn without replacement
from this urn. If both balls are red, find the probability that urn I was chosen. Under
these conditions, what is the probability that urn I1I was chosen.

Ans. 108/173, 112/12,0 (Gauhati Univ. B.Sc., 1990]

(b) There are ten urns of which each of three contains 1 white and 9 black balls,
each of other three contains 9 white and 1 black ‘ball, and of the remaining four,
each contains § white and S black balls. One of the ums is selected at random and
a ball taken blindly from it tumns out to be white. What is the probabililty that an
urn containing 1 white and 9 black balls was selected? ngra Univ. B.Sc., 1991)

Hint: P (E)= 13 P(E)=15 and P (E5)=
Let A be the event of drawing a whlte ball.

3. 1.3 _9_ 4. 5_1
”(“)‘10" * 0% +1ox 10~ 2
PA|E)= 16 nd P(EulA)——S%

{c) It is known that an umn containing altogether 10 balls was: filled in the
following manner: A coin was tossed. 10 times, and according as it showed heads
or tails, one white or one black ball was put into-the urn. Balls are drawn, from this
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A : Defective ball is selected.

P(E)=1/5i=1,2,..,5.

PA|E)= P[Dcfecuve ball from ith urn]—1/10 (i=1,2,..5)
l

PE).FAIE)= _"1_0'% , (i=1,2,..5).
- 5 .
. _ . N i 142+3+4+5 3
(i) P(A)—ifll’(E.)P(AlE.)-ifl[50) = =10
: ; 2
W e e PEVPAIE) /50 i | i=1.2...5.

SPE)PAIE) 3710 15°
i

For example, the probability that the defective ball came from Sth um
=(5/15)=1/3.

6. (a) A bag contains six balls of different colours and a ball is drawn from it
at random. A speaks truth thrice out of 4 times and B speaks truth 7 times out of 10
times. 1f both A and B say that a red ball was drawn, find the probability of their
joint statement being true.

{Delhi Univ. B.Sc. (Stat. Hons.),1987; Kerala Univ. B.Sc.1988])

(b) A and B are two very weak students of Statistics and their chances of
solving a problem correctly are 1/8 and 1/12 respectively. If the probability of their
making a common mistake is 1/1001 and they obtain the same answer, find the
chance that their answer is correct. [Poona Univ. B.Sc., 1989]

Ans. Reqd. Probability = Y8 x Vi2 -B

) . WBxW2+(1-1).(1-W2). oot 14

7. (a) Three boxes, practically indistinguishable in appearance, have two
drawerseach. Box 1.contains a gold coin in one and a silver coin in the other drawer,
box 1I contains a gold coin in each drawer and box 111 contains a silver coin in each
drawer. One box is chosen at random and one of its drawers is opened at random
and a gold coin found. What is the:probability that the other drawer contains a coin
of silver? (Gujarat Univ. B.Sc., 1992)

Ans. 1/3,173.

(b) Two cannons No. 1 and 2 fire at the same target. Cannon No. 1 gives.on
an average 9 shots in the time in which Cannon No. 2 fires 10 projectiles. But on
an average 8 outof 10 projectiles from Cannon No. I and 7 outof 10 from Cannon
No. 2 strike the target. In the course of shooting, the target is struck by one
projectile. What is the probability of a projectile which has struck the target
belonging to Cannon No. 2 ? (Lucknow Univ. B.Sc., 1991)

Ans. 0493 )

(c) Suppose 5 men out of 100 and 25 women out of 10,000 are colour blind.
A colour blind person is chosen at random. What is the probability of his being
male? (Assume males and females (0 be in equal numbcr)

Hint. E, = Person is a male, E,=Person is a female.
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A =Person is colour blind.

Then P(E))=P (Ey)=Y2, P(A| E))=005, P (A | E)= 0:0025.

Hence find P (E, |.A).

8. (a) Thrce machines X, Y, Z with capacities proportional to 2:3:4 are
producting bullets. The probabilities that the machines produce defective are 0-1,
0-2 and 0-1 respectively. A bullet is taken from a day’s production and found to be
defective What is the probability that it came from machine X ?

[Madras Univ. B.Sc., 1988]

(b) In a factory 2 machines M, and M, are used for manufacturing screws
which may be uniquély classified as good or bad. M, produces per day n; boxes of
screws, of which on the average, p\% are bad while the corresponding numbers for
M are n; and p,. From the total production of both M, and M, for a certain day, a
box is chosen at random, a screw taken out of it and it is found to be bad. Find the
chance that the selected box is manufactured (i) by M,, (ii) Ma.

Ans. (i) mp/(mpr+mpy), () mp/(mpr+mpr).

9. (a) A man is equally likley to choose any one of three routes A, B, C from
his house to the railway station, and his choice of route is.not influenced by the
weather. If the weather is dry, the probabilitics of missing the train by routes A, B,
C are respectively 1/20, 1/10, 1/5. He sets out on a dry day and misses the train,
What is the probability that the route chosen was C ?

On a wet day; the respective probabilities of missing the train by routes A, B,
Care 1120, 1/5, 1/2 respectively. On the average, one day in four is wet. If he misses
the train, what is the probability that the day was wet?

{Allahabad Univ. B.Sc., 1991]

(b) A doctor is to visit the patient and from past experience it is known that
the probabilities that he will come by train, bus or scooter are respectively 3/10,
1/5, and 1/10, the probabililty that he will use some other means of transport being,
therefore, 2/5. If he comes by train, the probability that he will be late is-1/4, if
by bus 1/3 and if by scooter 1/12, if he uses some other means of transport it can
be assumed that he will not be late. When he arrives he is late. What is the
probability that (i) he comes by train (ii) he is not.late?

[Burdwan Univ. B.Sc. (Hons.), 1990]

Ans. (i) 102, (ii)9/34

10. State and prove Bayes rule and expalin why, in spiteof its easy deductibility
from -the postulates of probability, it has been the subject of such extensive
controversy.

In the chest X-ray tests, it is found that the probability of detection when a
person has actually T.B. is0-95 and probabililty of diagnosing incorrectly as having
T.B. is 0:002. In a cenain city 0-1% cf the adult population is suspected to be
suffering from T.B. If an adultisselected at random and is diagnosed as having
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T.B. on the basis of the X-ray test, what is the probability of his actually having a
T.B.? (Nagpur Univ. B.E., 1991)
Ans. 097
11. A centain transistor is manufactured at three factories at Barnsley, Bradford
and Bristol. Itis known that the Barnsley factory produces twice-as many transistors
as the Bradford one, which produces the same number as the Bristol one (during
the same period). Experience also shows that 0-2% of the transistors produced at
Bamsley and Bradford are faulty and so are 0-4% of those produced at Bristol.
A service engineer, while maintaining an electronic equipment, finds a defec-
tive transistor. What is the probability that the Bradford factory is to blame?
(Bangalore Univ. B.E., Oct. 1992)
12. The sample space consists of integers from 1 to 2n which are assigned
probabilities proportional to their logarithms. Find the probabilities and show that
the conditional probability of the integer 2, given that an even integer occurs, is
log 2
[nlog2+ log(n!)] (Lucknow Univ. M.A., 1992)
[Hint. Let E; : the event that the integer 2i is drawn, (i= 1,2, 3, ...,n).
A : the event of drawing an even integer.

n
= A= E,VE,L...VE, = P(A)= Z P(E)
i=1

But P(E)=klog(2) (Given)
P(A)=k Z log (2i)=klog [nI 2i)= k[nlog2+ log (n!)]
e . $

=
N aye — log ()
: Pl = [nlog2+ log(n'))

13. In answering a question on a multiple choice test, an examinee either
knows the answer (with probability p), or he guesses (with probability 1 - p).
Assume that the probability of answering a question correctly is unity for an
examinee who knows the answer and 1/m for the examinee who guesses, where m
is the number of multiple choice alternatives. Supposing an examinee answers a
question correctly, what is the probability that he really knows the answer?

[Delhi Univ. M.C.A., 1990; M.Sc. (Stat.), 1989]

Hint. Let E, = The examinee knows the answer,

E; = The examinee guesses the answer,
and A = The examinee answers correctly.
Then P(E)=p, P(E)=1-p, P(A|E)=1and PA | E)= I/m
Now use Bayes theorem to prove
S A—
PENN= 055

14. Die A has four red and two. white faces whereas die B has two red and four

Wwhite faces. A biased coin is flipped once. If it falls heads, the game continues by
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throwing die A, if it falls tails die B is to be used.
(i) Show that the probability of getting a red face at any throw is 1/2.

(ii) If the first two throws resulted in red faces, what is the probability of
red face at the 3rd throw?

(iii) 1f red face tumns up at the first n throws, what is the probability that die
A is being used?

Ans. (i) 3/5 (iii)

20
2"+1

15. A manufacturing firm produces steel pipes in three plants with daily
production volumes of 500, 1,000 and 2,000 units.respectively. According to past
experience it is known that the fraction of defective outputs produced by the three
plants are respectively 0.005, 0.008 and 0.010. If a pipe is selected at random from
a day’s total production and found to be defective, from which plant does that pipe
come?

Ans. Third plant. ‘

16. A piece of mechanism consists of 11 components, 5 of type A, 3 of type
B, 2 of type C and 1 of type D. The probability that any particular component will
function for a period of 24 hours from the commencement.of operations without
breaking down is independent of whether or not any other component breaks down
during that period and can be obtained from the following table:

Component type:ABCD

Probability:0-60-70-30-2

(i) Calculate the probability that 2 components chosen at random frorn the 11
components will both function for a period of 24 hours from the commencement
of operations without breaking down.

(i) If at the end of 24 hours of operations neither of the 2 components chosen
in, (i) has broken down, what is the probability that they are both type C com-
ponents.

Hint.

1
"C

(i) Required probability = [°C: % (0-6)* +°C; (0-7)* + *C2 (0-3)*

2
+3C, x3Cy X 0:6 X 0-7 + °Cy X 2C, X (0-6) % (0-3)
+3C % 'C % (06) X (0-2) + °C, x *C; X 0-7T x 03
+2C, %10 x0Tx02+%C, x'C, x0-3x0-2]
=p (Say).
(ii) Required probability (By Bayes theorem)
_ 26 x 037 009
P v P
4-10. Geometric probability. In rematk 3, § 4-3-1 it was pointed out that the
classical definition of probability fails if the total number of outcomes of an
experiment is infinite, Thus,ﬂ for example, if we are interested in finding the
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probability that a point selected-at random in a given region will lie in a specificd
part of it, the classical definition of probability is modificd and extended to what
is called geometrical probability or probability in continuum. In this case, the
general ‘expression for probability ‘p’ is given by

_ Measure_of specified part of the region
p Measure of the whole region

where ‘measure’ refers to the length, area or volume of the region if we are dealing
with one, two or three dimensional space respectively.

Example 4-34. Two points are taken at random on the given straight line of
length a. Prove that the probability of their distance exceeding a given length

¢ (< a).is equal to (l —ﬁ ]z

[Burdwan Univ. B.Sc. (Hons.), 1992; Delhi Univ. M.A. (Econ.), 1987]
Solution. Let P and Q be any two points taken at random on the given straight
line AB of length ‘a’.Let AP =x and AQ =,
(0£x<a,0<y<a).
Then we want P{l x—y | >c}.
The probability can be easily calculated geumetrically. Plotting, the lines
x-y=cand y~ x= c along-the co-ordinate axes, we get the following diagram:

Y

Since0<x<a,0<y<a, total aréa=a.a=a".
Area favourable (o the event | x — y | > ¢ is given by

ALMN+A'DEF=-;-LN.MN+%EF'.DF
=2@-of+3@-c=Ga-cf
(a-c)’_

- _<
P(Ix-yl>c)——a1-——(l a]z
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Example 4-35. (Bertrand’s Problem). If a chord is taken at random in a
circle, what is the chance that its length | is not less than ‘a’ , the radius of the
circle?

Solution. Let the chord AB make an angle 6 with the diameter AOA ’ of the
circle with centre O and radius OA=a. Obviously 6 lies betwseen - /2 and n/2.
Since all the positions of the chord AB and
consequently all the values of 8 are equally
likely, 6 may be regarded as a random vari-
able whichis uniformly distributed c.f. § 8:1
over (- n/2, &/2) with probability density
function

f@)= % s —n/2<0< n/2

Z ABA’, being the angle in a semi-
circle,isarightangle. FromrA ABA’ we have
A= 08 0

= l=2a cos 0
Therequired probability ‘p’ is given by
p=P( 2 a)= P(2acos0 2 a)

=P(cos® 2 1/2)=P (10 | < n/3)
3 0%

3
=] f@0-= ; [ do= 3
-rn/3 -rn/3
Example 4-36. A rod of length ‘a’ is broken into three parts at random. What
is the probability that a triangle can be formed from these parts?
Solution. Let the lengths of the three. parts of the rod be x, y and a - (x + y).
Obviously, we have
x>0; y>0andx+y<a = y<a-=x «.(*¥)
In order that these three parts form the sides of a triangle, we should have

xX+y>a-(x+y) = y>5—x i

13

and x+ta-(x+y)>y = y<% > (%)

y+ta-(x+y)>x = y<-;-

since in a triangle, the sum of any two sides is greater than the third. Equivalently,
(**) can be written as

%—x<y<% A 0<x<92- w(*4%)

Hence, on using (*) and (**+), the required probability is given by
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a2 a2 a2 .
[ ] & | [%‘ (g-x]]dx
0 (@2)-x X = 0
a a-x a
[ | & [@-x ax
0 o0 0
"Xt lar2
_ 120 - a8 1
T |-@-x*a "2 4
2 o

Example 4.37. (Buffon’s Needle Problem). A vertical board is ruled with
horizontal parallel lines at constant distance ‘a’ apart. A needle of length | (< a)
is thrown at random on:the table. Find the probability that it will intersect one of
the lines.

Solution. Let y denote the distance froin the centre of the needle to the nearest
parallcl and ¢ be angle formed by the needle with this parallel. The quantities y
and ¢ fully determine the position of the needle. Obviously y ranges from 0 to
af2(sincel<a)and ¢ fromQtom.

Since the needle is dropped randomly, all possible values of y and ¢ may be
regarded as equally likely and consequently the joint probability density function
f(,9) of y and ¢ is given by the uniform

distribution.( c.f. § 8.1 ) by , : ‘
fO.9=k; 0s¢<m, ‘1
0<y<as2, ..(¥ /
where k is a constant. a \
The needle will intersect one of the
lines if the distance of its centre from the / A

line is less than 11sing, i.c., the required

event can be represented b)'/ the inequality
0<y<3 Isin ¢ . Hence.the required probability p is given by

x  (Isingy2
| £ 9) dy do
o= 0
. ® a/2
[ | ro.0aya
0 0
é[ sindd o

-0
T (@).m

I B L
T an 0 an
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EXERCISE 4 (e)

1. Two points are selected at random in a linc AC of length ‘@’ so as to lic on
the opposite sides of its mid-point O. Find the probability that the distance between
them is less than a/3 .

2. (a) Two points are selected at random on a line of length a. What is the
prabability that acne of three sections in which the line is thus divided is less than
a/4?

Ans. 1/16.

(b) A rectilincar segment AB is divided by a point C into two parts AC=q,
CB=b. Points X and Y are taken at random on AC and CB8 respectively. What is the
probability that AX, XY and BY can form a triangle?

(c) ABG is a straight line such that AB is 6 inches and BG is 5 inches. A pdint
Y is chosen at random on the BG part of the line. If'C lies between B and G in such
a way that AC=t inches, find

(i) the probability that Y will li¢ in BC.
(ii) the probability that’Y will lie in CG.

What can you say about the sum of these probabilities?

(d) The sides of a rectangle are taken at random each less than a and all lengths
are cqually likely. Find the chance that the diagonal is less than a.

3. (a) Three points are taken at random on the circumference of a circle. Find
the chance that they lie on the same semi- circle.

{(b) A chord is drawn at random in a given circle. What is the probability that
it'is greater than the side of an equilateral triangle inscribed in that circle?

(c) Show that the probability of choosing two points randomly from a line
segment of length 2 inches and their being at a distance of at least 1 inch from each
other is 1/4. {Delhi Univ. M.A. (Econ.), 1985]

4. A point is sclected at random inside a circle. Find the probability that the
point is closer to the centre of the circle than to its circumference.

S. Onc takes at random two points P and @ on a segment AB of length a

(i) What is the prooability for the distance-PQ being less than b ( <a J?
(i) Find the chance that the distance between them is greater than a given
length b.

6. Two persons A and B, make an appointment to meet on a certain day at a
certain place, but without fixing the time further than that it is to be between 2 p.m.
and 3 p.m and that each is to wait not longer than ten minutes for the other.
Assuming that each is independently equally likely to arrive at any time during the
hour, find the probability that they meet.

Third person C, is to be at the same place from 2-10 p.m. untif 2-40 p.m. on
the same day. Find the probabilities of C being present when A and B are there
together (i) When A and B remain after they meet, (ii) When A and B leave as soon
as they meet.
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Hint. Denote the times of arrival of A by x and of B by y. For the meeting to

take place it is necessary and sufficient that
| x-yl <10

We depict x and y as Cartesian coordinates in the plane; for the scale unit we
take one minute. All possible outcomes can be described as points of a aquare with
side 60. We shall finally get [c.f. Example 4-34, with a = 60, ¢ = 10] )

Pllx-y|<10]= 1-(5/6)’= 11/36

7. The outcome of an experiment are represented by points in the square
bounded by x=0, x =2 and y =2 in the xy-plane. If th¢ probability is distributed
uniformly, determine the probability that x* + y* > 1

Hint.

Required probability P (E) = J % dx dy = 1- J % dx dy
E E
where E is the region for which x*+)*>1 and E’ is the region for which
2 2
X +y <L

11
apE)=4-| [ ax dy=3 = P(E):%
00
8. A floor is paved with tiles, each tile. being a parallclogram such that thé
distance between pairs of opposite sides arc a and b respectively, the length of the
diagonal being . A stick of length ¢ falls on the floor parallel to the diagonal. Show
that the probability that it will lie entircly on one tile is

(-]

If a circle of diameter 4 is thrown on the floor, show that the probability that
it will lic on one tile is

d d
[1-2) (1-5) ‘
9. Circular discs of radius 7 are thrown at random on to a plane circular table
of radius R which is surrounded by. a border of uniform width 7 lying in' the same
plane as the table. If the discs are thrown independendy and at random, 2nd N stay

on the table, show that the probability that a fixed point on the table but not bn the
border, will be covered is

f2
L= [l"(Rw)’T
SOME MISCELLANEQUS EXAMPLES
. Example 4-38. A die is loaded in such a manner that for n=1,2,3,4,5,6 the
probability of the face marked n, landing on top When the die is rolled is propor-

tional to n. Find the probability that an odd number will appear on tossing the die.
[Madras Univ. B.Sc. (Stat. Main),1987]
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Solution. Here we-are given
P(nyecn or P (n)=kn, where kis the constant of proportionality.
Also P(1)+P(2)+..P6)=1 = k(1+2+3+4+5+6)=10rk=1/21

Required Probability = P(1) + P(3) + P(5) = “‘%2 %

Example 4-39. In.terms of probability :
p1=P(A), p2=P(B), ps=P(ANB), (p1,p2p3>0)
Express the following in terms of p;. .p2, ps
(a) PAUB), (bJPAUB), (c)PANB), (A PAUB), (e)P(ANB)
() PCANB), (g) P(A|B), ()P (B|A), (i) P[AN(AUB)
Solution,
(a) P(AUB)=1- P(AUB)= 1-[P(A)+ P(B)- P(AB)]
_ _=l-p-p+tps.
() P(AUB)=P(ANB)=1- P(ANB)=1- p,
(c) P(ANB)=P(B-AB)=P(B)-P(ANB)=n-ps
(d P(AUB)=P@)+ PB)-PANB)=1-pi+ po~ (P2— p3)
=1- nh+ p
() P(ANB)=PAUB)=1-pi— p+ ps. [Part (@)}
() P(ANB)=P(A- AnB)= P(A)- PANB)=p,—ps *
(8) P(A|B)=P(ANB)/P(B)= ps/p,
(k) P(BFA)= P(ANB)/P(A)= (pr—p3)/(1-p)
(i) P[ANAUB)I=P[(ANA)YU(ANB)]
= P(ANB)= p— ps (""AnA=¢]
Example 4-40. Let P(A) = p, P(A|B)=gq,P (B|A)=r. Find relations be-

tween the numbers p, q, r for the following cases :

(a) Events A and B are mwually exclusive.

(b) A and B are mutually exclusive and collectively exhaustive.
(c) Ais asubeventof B, B is a subevent of A.

(d) A and B are mutually exclusive.

[Delhi Univ. B.Sc. (Maths Hons.) 1985}
Solution, From givendata: P (A)=p, P(ANB)=P(A)P (B|A)=rp

_PANB)_1rp
PE®="7@B ~ ¢
(a) PANB)=0 = rp= 0.
(b) PANnB)=0and P(A)+ PB)=1
= p@+A=qmp=0 = pg=q = p=1Vq=0.
(¢c) AcB = AnB=A orrPANB)=PA) = rp=p = r=1Vp=0.
BgcA = ANnB=B or P(ANn B)=P(B)
= rp=(p/q) o p(g-1)=0 = g¢g=1
(d) PANB)=1-P(AUB) = 0=1-[PA)+P(B)-P(ANB)|
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So PA)+PB)=1+P(ANB) = pll+/@l= 1+rp
. p@+ nN=q(+ pr).

Exampled-41. (a) Twelve balls are distributed at random among three boxes.
What is the probability that the first box will contain 3 balls?

(b) If n biscuits be distributed aniong N persons, find the chance that a

ticular person receives r ( < n ) biscuits.  [Marathwada Univ. B.Sc. 1992]

Solution. (a) Since each ball can go'to'any one of. the-three boxes, there. are 3
ways in which a ball can go to any gne of the three boxes. Hence there are 32 ways
in which, 12 balls can be placed in the three boxes.

Number of ways in which 3 balls out of 12 can go to the first box is '*Cs. Now
the remaining 9 balls are to be placed in 2 boxes and this can be done in 2’ ways.
Hence the total number of favourable cases = '2Cy x 2°.

f 12C3 X 29
Required probability = T

(b) Take any one biscuit. This can be given to any on& of the N beggars so that
there are N ways of distributing any one biscuit. Hence the total number of ways
in which n biscuit can be distributed at random among N beggars

= N.N..N(ntimes)= N". .

'r’ biscuits can be given to any particular beggar in "C, ways. Now we are left
with (n— r) biscuits which are ‘to be distributed among the remaining (N — 1)
beggars and this can be done-in (N - 1)" " ways.

Number of favourable cases = "C, . (N - 1); ™"
"C,(N-1)""
N n

Example 4-42. A car is parked among N cars in a row, not.at either end. On
his return the owner finds that exactly r of the N pjaces are still occupied. What'is.
the probability that both neighbouring places are empty?

Solution. Since the owner finds on return shat exactly r of the N places
(including-owner’s car) arc occupied, the exhaustive number of cases for such an .
amangement is "~'C,., [since the remaining r - 1 cars are to be parked in the
remaining N — 1 places and this can'be done in ¥~'C,_, ways).

Let A denote the event that both the neighbouring places to owner’s car are
empty. This requires the remaining (r — 1) cars to be parked in ‘the remaining
N - 3 places and hence the humber of cases favourable 0 A is ¥~°C,_.. Hence

N3G, (N=r(N=-r-1)
PO= 55 = T - hv-2)

Hence, required probability =

Example 4-43. What is the probability that at least two out of n people have
the same birthday? Assume 365 days in a year and that all days are equally likely. .
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Solution. Since the birthday of any person can fall on any one of the 365 days,
the exhaustive number of cases for the birthdays of n persons is 365",
If the birthdays of all the n persons fall on different days, then the number of
favourable cases is
365(365-1)(365-2)....[365~(n-1)],
because in this case the birthday of the first person can fall on any one of 365 days,
the birthday of the second person can fall on any one of thé remaining 364 days
and so on.
Hence the probability (p) that birthdays of all the r persons are different s
given by :
_365(365-1) (365—-2)...[365-(n—-1)]
365"

- (-3 ) 365 ) 3 )- (-5

Hence the required probability that at least two persons have the same birthday

1 (1= (1= 2 (1= 2 ). (1=t
I=p=1 (1 365 ) ['1 365 ) [l 365 )[l 365 ]
Example 4-44. A five-figure number is formed by the digits-0, 1, 2, 3,4
(without repetition). Find the probability-that the number formed is divisible by4.

[Delhi Univ. B.Sc. (Stat. Hons.), 1990]

Solution. The total number of ways in which the five digits 0, 1,2, 3,4 canbe
arranged among themselves is 5!. Out of these, the number of arrangements which
begin with 0 (and, therefore, will give only 4-digited numbers) is 4!. Hence the
total number of five digited numbers that can be formed from the digits 0, 1, 2,3,
4is

is

51-4:1=120-24=96

The number formed will be divisible by 4 if the number formed by the two
digits on extreme right (i.e., the digits in the unit and tens places) is divisible by 4.
Such numbers are :

04,12,20,24,32,and 40

If the numbers end in 04, the_remaining three digits, viz.,1, 2 and 3 can b¢
arranged among themselves in 3 ! ways. Similarly, the number of arrangements of
the numbers ending with 20 and 40 is 3 ! in each case.

If the numbers end with 12, ihe remaining three digits O , 3 , 4 can be arranged
in 3 ! ways. Out of these we shall reject those numbers which start with 0 (i.e., have
0 as the first digit). There are (3-1) ! = 2! such cases. Hence, the number of five
digited numbers ending with 12 is

31-21=6-2=4
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Similarly the number of S.digited numbers ending with 24 and 32 each is 4.
Hence the total number of favourable cases is
Ix31+3x4 =18+12 =30

Hence required probability = 0_35

Example 4-45. (Huyghen's problem). A and B throw alternately with a pair
of ordinary dice. A wins if he throws 6 before B throws7, and B wins if he throws
7 before A throws 6. If A begins, show that hi's chance-of winning is 30/ 6]

[Delhi Univ. B.Sc. (Stat. Hons.), 1991; Delhi Univ. B.Sc.,1987)

Solution. Let E, denote the event of A’s throwing ‘6’ and E, the event of B’s
throwing ‘7 with a pair of dice. Then E, and E, are the complementary events.

‘6’ can be obtained with two dice in the following ways:

(1,5),(5,1 ) 2,4),4,2),(3,3), ie., inS distinct ways.
-3 =13l
P (E)) = and P(E,) 1- 36 36
‘7’ can be ob(amed wnth two dice, as follows:
1,6),(6,1),(2,5),(5,2),(3,4),(4,3), i.e., in 6 distinct ways.
P(E3) = 6_1 and P.(E)=1 —%: %
If A starts the-game, he will win in the following mutually exclusive ways:
(i) E)happens (ii) E, N E, N E, happens
(iii) E,NE,NE, NE,NE, happens, and so on.

Hence by addition theorem of probability, the required probability of A’s
winning, (say), P (A) is given by

P (A) = P (i) + P (ii) + P (iii) + ..

= P(E]) +P (E] f\Ezﬁ E]) +P (E] (\Ezﬁfl (\EQ(\E])'F voee
= P(E\) + P(E,) P(E;) P(E,) + P(E,) P(E,) P(E,) P(E2) P(E}) + ...
(By compound probability theorem)

=23, 3,3 3, 3,31, 5,5,

3673676 36 36 6 36 6 36
__5/36 30
'1 31 §‘61

366

Example 4-46. A player tosses a coin and is'to score one point for every head
and two points for every tail turned up. He is to play on until his score reaches or
passes n. If pa is the chance of attaining exactly n score, show that

po=% [po-] + Pa-2 1
and hence find the value of pa. {Delhi Univ. B.Sc. (Stat. Hons.),1992]
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Solution. The score n can be reached in the following two mutually exclusive
ways:
(i)By throwing a tail when score is (n - 2), and’
(ii)By throwing a head when score is (n - 1).
.Hence by addition theorem of probability, we get

Pa=P()+P ()= .paz+3.Pa1=3(Pa-i+Pa-2) )

To find p, explicitly, (*) may. be re-written as
Dn +%pn-l ='Pi-1 +'21‘pa-2

= pn-2+';'pa-3

= prtyp +%)
Since the score 2 can be obtained as
(i)Head in first throw and head in 2nd throw,
(ii)Tail in the first throw, we have
11,111

3 1
=5 2+2 4+2 4andobvnouslypn 2

Hence, from (‘ *), we get

3,11 ,.2,1_2.12
Pt 2”' =2t37l=3+v3=3+33
P=3=(-) @1~
Pr-1=3=(=) (Pa-2-2)
Pz'%= -%) 1--}

Multiplying all the above equations, we get
D -§=(—%)"-l (Pl‘%
n-1 - a 1 1
=(-3" G-H=(-D 3
’ =2 —1pLl 1
= p=3+ (S5

I a 1
= 3[2‘*(‘1) E:I

Example 4-47. A coin is tossed (m+n) times, (mn). Show that the probability
n+ 2

- [Kurukshetra Univ. M.Sc. 1990; Calcutta Univ. B.Sc.(Hons.),1986]

of at least m consecutive heads is
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Solution.  Since m >n , only one scquence of m consecutive heads is
possible. This sequence may start either with the first toss or second toss or third
toss, and so on, the last-one will be starting with (n + 1)¢h toss.

Let E; denote the event that the sequence of m consecutive heads starts with
ith toss. Then the required probability is

P (E\)+P (E2)+ ...+ P (Ens)) (%)

Now P(E;) = P [Consecutive heads in first m tosses and head or tail in the rest]

1

2
P (E;) = P [Tail in the first toss, followed by m consccutive heads and
head or tail in the next]

(1Y 1
_52_21:-41

In general,
P (E,) = P [tail in the (r — 1)th trial followed by m consecutive heads
and head or tail in the next ]
1177 1 .
- 2[2T‘ S ¥ r=23n+l.
Substituting in (),
A _ 2+n

Required probability = -2-1; + = T
Example 4-48. Cards are dealt one by one from a well-shuffled pack until an
ace appears. Show that the probability that exactly n cards are dealt before the
first ace appears is
4(51— n) (50— n) (49— n)
52.51.50.49 [Delhi Univ. B.Sc. 1992]
Solution. Let E; denote the event that an ace appears when the ith card is
dealt. Then the required probability ‘p’ is given by
p = P [Exactly n cards are dealt before the first ace appears]
= P [The first ace appears at the (n + 1)th dealing]
=P(E\NE;NE;N ... NEay NE,NEa,y)
= P(E,) P(E,|E) P (E;|E,NE)y ...
XPENE,NE;N ... NE,.1 )X P (Exir [EANE,N ... NE))
i

(¥
‘Now
By L p e 28
— 4 - = 47
P(Ez|E|)=E = P(Ez|El)='5_1'
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- = 4 - = = 46
. P(,Ea|ElﬁEz)=% = P(Es|ElﬂEz)=§6
P(E..\|IEENE,N...NE,_)= 4
a-1 1 2 s n=- _52__(”_2)
= = = = ,_ _S0-n
P(En-)IElnEZn‘“nEu-Z)“— 52"(’1"2)
- = — 4
P(E,JEENE;N...0E, )= 52-0i-1)
- - = = __4¥-n
P(EnlElnEzn"'hEn-l)— 52"'(”"1)
, - = - 4
ad. P(EMIENEN . NE)= 5
. “Hence, from (*) we get
" 48 47 46 45 44 13_ . 52-n
[52x51 X50729% 8T X2 - (n - a)
% Sl—n N S0-n » 49— n o 4
52- (n-3)"52-(n-2)"52-(@n-1"52-n

_ (51= n)50- n)49- n)4
B 52 x 51 x50x49

Exam ple 4-49. If four squares are chosen at random on d chess-board, find
the chance that they should be in a diagonal line.
{Delhi Univ. B.Sc. (Stat. Hons.), 1988]
Solution. In a chess-board there are 8 x 8 = 64 squares as shown in the
following diagram.
p Let us consider the number of ways in

A . which the 4 squares selected at random are
A - in a diagonal line parallel 10 AB. Consider
A; i the A ABC. Number of ways in which 4
As \\ | selected squares are along the lines A4 By,
A : A3 B3, A2 By, A1 B and AB are *C., °C.,

\~ *$Cs, 'Ciand 3C, respectively.
N Similarly, in AABD there are an
\ \1\ N equal number of ways of selecting 4
' squares in a diagonal line parallel to AB.
AN Hence, total nimber of ways in which
C B. By B; B, the 4 selected squares are in a diagonal

line  parallel to AB ar¢
2 (‘C4 +°Co+ °Ca+ 1C4) + ‘C4
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Since there is an equal number of ways in which 4 selected squares are in a
diagonal line parallel to CD, the required number of favourable cases is given by
2[2(*Ca+°Co+°%Ca+"Cs) +°Cs ]

Since 4 squares can be selected outof 64 in *C, ways, the required probability

_ 202(*Ca+°Cy+°Ce+7Ca) +°C4]

“C‘
_[4(1+5+15+35)+140]1x4h _ 91
- 64 X 63-x 62 x:61 T, 158844

Example 4-50. An urn contains four tickets marked with numbers 112, 121,
211,222 and one ticket is drawn at random. Let A;, (i=1,2, 3) be the event that ith
digit of the number of the ticket drawn is 1. Discuss the independence of the events
Ay, A2 and As. [Delhi Univ. B.Sc.(Stat. Hons.),1987; Poona Univ. B.Sc.,1986]

Solution. We have

P(4) =2 =1 = P(a) = P(A)

A; N A, is the event that the first two digits in the number which the sclected ticket

bears are each equal to unity and the only favourable case is ticket with number
112.

P(AiNA) =1 = 1=13
= P (A1) P(A7)
Similarly,
P(A2N As) = % = P(A2) P(A3)
and P NA) = = P(A) P(A)

Thus we conclude that the events A,, A; and A, are pairwise independent.
Now P(A; N-A3nyA;) = P {all the three digits in the number are 1’s)
= P(9)
=0= P(Al) P(Az) P(A))
Hence A,,A;and A; though pairwise independent are not mutually inde-
pendent.

Example 4-51. Two fair dice are thrown independently. Three events A, B
and C are defined as follows:

A : Odd face with first dice
B : Odd face with second dice
C : Sum of points on two dice is odd.

Are the events A, B and C mutually independent?
[Delhi Univ. B.Sc. (Stat. Hons.) 1983; M.S. Baroda Univ. B.Sc.1987]
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Solution. Since each of the two dice can show any one of the six faces 1,2,3,
4,5,6,we get:

_3x6_1 A= (]
P(A)— 36 "'2 [- A—[1,3,S]x[1,2,3,4,5,6]]
_3x6_1 B=(L2 L
P(B)_ 36 _2 [.B—[1,2,3,4,5,6}X[1,3,5}]

The sum of points on two dice will be odd if one shows odd number and the
other shows even number. Hence favourable cases for C are :
(1,2), (1,4), (1,6); “4,1), 4,3), 4,5)
2, 1), 2,3), 2,5); (5,2), 5,4), 5,6)
(3,2), 3,4), 3,6); (6,1), 6,3}, (6,5)
ie., 18 cases in all,
Hence P(C) = 18 —1-..
36\ 2
Cases favourable to the events ANB,ANC,BNC and AnBNC are
given below :

Event Favourable cases

AnB (1,1),(1,3),(1,5),(3:1),(3,3),(3,5), (5, 1) (5,3)
(5,5),ie,9inall

ANC 1,2),1,4,1,6),(3,2),(3,4),(3,6),(5,2),(5,4)
(5,6),ie,9inall. '

BnC 2,1),4,1),(6,1)@2,3), (4,.3), 6,3),2,5),4,5),
6.5),i.e.,9inall

ANBNC Nil, because ANB-implies that sum of points on two dice is
even and hence (ANB)NC = ¢

PANB) = 3% = % = P(A)P(B)
PANC) = % = % = P(A) P(C)
PBAC) = % - % =P@®B) P(C)

and P(ANBNC) = P@) = 0% P(A) P(B) P(C) )

Hence the events A, B and C are pairwise independent but not mutually
indeper:dent.

Example 4.52. Let Ay, A, ..., A, be independent events and P (Ai) = p.
Further, let p be the probability thai none of the events occurs; then show that

p<eth [Agra Univ. M.Sc., 1987]
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Solutﬁm. We have
p=P(A0EN..OR)

= .l'll P@&)= 'l'll (1-P@A)]= .l'll 1-p)

[since A; ’s are independent]

<ﬁe.—p‘ [1=x<e*for0< x <1
P and 0< p; < 1]
= p<exp|[- ZP.],
i=1
as desired.
Remark We have
l-x<e*for0<x<1 w(®)

Proof. The inequality (*) is obvious for x = 0 and x = 1. Consider 0 < x < 1.
Then -

log(1-x)" = —log(1-x)
x+x—2+2r—3-+£+ <)
273774 .
the expansion being valid since 0 < x < 1. Further since x>0, we get from (+*)

log(1-x)"'>x

= —log(l1-x) > x

= log(1-x) < —x

= l-x< e,
as desired.

Example 4-53. In the followmg Fig.(a) and (b) assume that the probability of
arelay being closed is P and that a relay is open or closed independently of any
other. In each case find the probability that current flows from LioR.

/l\' (D Ls

Solution. Let A dcnotc the evem that the relay i, ( i=1, 2 ., 6) is closed.
Let E be the event that current flows from L to R.

In Fig. (a) the current will flow from L to R if at least one of the circuits from
L to R is closed. Thus for the current to flow from L to R we have the following
favourable cases:
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() AN A= B, (i)) AsnAs= B, d
(iii) AlﬁAgﬁA5= By, (iV) A4ﬁA3ﬁAz= B4,
The probability p, that current flows from L to R is given by
=P(B1 VB, UByUBy)= LPB)- X P(BinBj)+ I P(B:N BN By

i i<j i<j<k

- P(BiNnBaN B3N B,) w.(*)
Since the relays operate independently of each other, we have
P(B)=PANA) =P(A).P(A)=p.p=p
P(B)= P(ANAs) = P(A).P(As)=p.p=p’
P(Bs)= P(A)P(A)P (As) = p°
P(B)=PA)P (AP (A) = p
Similarly
P(B, N By) = P(A; N Ay N Ay N As) = P(A) P(A2) P(AJ) P(As) = p*
P (BiNB:NBs)= P (A NA:NAsN Ac Ag) =p°
and so on. Finally, substituting in (*) we get
=@ +p+p +p’ (p+p+p+p+p+p) .
, +@*+p’+p’+p)-p
=2p"+2p'~5p +2p°
In Fig. (b). Arguing as in the abové case, the required jrobability p, that the
current flows from L to R is given by
p2=P (El UE;UE;UEO
where
Ei=AiNA,E;=A3N A, Eg-—A4, Ei=As N Ag
p2= ZP (Ey)- LT P(ENE)+ X P(ENE,NE)
i<f i<j<k
- P(ExNEsNE3sNE)
=@ +p’ +p+p) =@ +p +p + P +p' +p)
+@'+p+p +p) - p’
=p+3p'-4p’~p'+3p° - p°
Matching Problem. Let us have n letters corresponding to which there exist
n envelopes bearing different addresses. Considering various letters being put in
various envelopes, @ match is said to occur if a lewter goes into the right envelope.
(Altemnatively, if in a party there are n persons with n different hats, a match is
said to occur if in the process of selecting hats at random, the ith person rightly
gets the ith hat.)

A match at the kth position for k=1, 2, ..., n."Let us first consider the event
A when a match occurs at the kth place. For better understanding let us put the
envelopes bearing numbners 1, 2, ..., » 1n ascending order. When A 6ccurs, & th
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letter goes to the kth envelope but (n - 1) letters can go to the remaining (n - 1)
envelopes in (n - 1) ! ways.
-1
Hence P4y ={8DL_ L1
n! n’
where P (Ay) denotes the probability of the k&th match. It is interesting to see that
P (As) does not depend on k.

Example 4-54. (a) ‘n’ different objects 1,2, ..., n are distributed at random
innplaces marked 1,2, ..., n. Find the probability that none of the objects occupies
the place corresponding to its number. [Calcutta Univ. B.A.(Stat.Hons.)1986;

Delhi Univ. B.Sc.(Maths Hons.), 1990; B.Sc.(Stat.Hons.) 1988]

(b) If n letters are randomly placed in correctly addressed envelopes,prove

that the probability that exactly r leters are placed in correct envelopes is given by
l n-=r

! k=0

1
- T 1,2,.,n
{Bangalore Univ. B.Sc., 1987]
Solution (Probability of no match). LetE;, (i = 1, 2, ..., n) denote the event
that the ith object occupies the place corresponding to its number so that E; , is the
complementary event. Then the probability ‘p’ that none of the objects occupies
the place corresponding to its number is given by
p= P(El hEzf\E)ﬁ ... Ea)
= 1 - P {atleast one of the objects occupies the place corresponding
to its number}

1- P(EsUE,UE L ... VE})

n n n
1-[ SP(E)~ IE PENE)+ IZE PENENE) ...

i=1 ij=1 ij k=1
i<y <j<k
+ ( l)“‘l P(E,NE;N...NE)] w(®)
Now P(E)— - i
P(E;N Ep)= P(E;) P(E;| E)
1 .
= At 1 Y ogjl<p
P(E: N E; " Ey) = P(E) P(E; | E) P(Ex| E: N E))
1 1 l' .
=TT asa V' ijk@i<j<k)
and so on. Finally,
PEE,NE,NEsN.. ﬁE)=% __l‘._l,’...%.l
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Substituting in (*), we get

L) _l__ll 1 —_— L] —l -
p“l_[ GOt Creo -2
. _q\0-1 1
= n(n—l)...3.2.l]
- 1.1 i 1
_1-[1—2!+3!— +(=1) ] -
1 1 1 . 1
TR TR TR AT
_rew
k=0 k!
Remark. For large n,
ETUP T T e S
p=l=-1+7 31 4t
= ¢! = 0.36787

Hence the probability of at least one match is
1 1 -1
1-p= 1—2—!+ﬂ—...+ nl
=1 -1 , (for large n)

(b) [Probabihty of exactly r matches {r<(n-2)} Let A, (i=1,2,...,n)
denote the event that ith letter goes to the correct envelope. Then the probability
that none of the n letters goes to the correct envelope is

n
PA,NA;N...nA)= X (- )/k! «.(**) [(cf. part (@)]
k=0
The probability that each of the ‘r' letters is in the right envelope is
1

D (-2 st ]’ and the probability that none of the remaining

(n— r) letters goes in the correct envelope is obtained by replacing n by (n —r) in
n=r A

(**) and is thus givenby X % . Hence by compound probability theorem,
k=0 K°

the probability that out of n letters exactly r letters go to correct envelopes, (in a

specified order), is
1 n-r (_ lt )

nin-1)(n-2)...(n-r+1) kfo k!

Since r letters can go to n envelopes in "C, mutually exclusive ways, the
required probability of exactly 7 letters going to correct envelopes, (in any order,
whatsoever), is given by

r<n-2.



Theory of Probability 499

N l n-r (_ l)k _ _1__ n
n(n=-1)(n-2)...(n-r+1), g k' ~rt,

Example 4-55. Each of the n urns contains ‘a’ white balls and ‘b’ black balls.
One ball is transferred from the first urn to the second, then one ball from the latter
into the third, and so on. If pu is the probability of drawing a white ball from the
kth urn, show that ’

"C,

-r , 1
20(- 1) Il

a
a+b+1

a+1l
Drey = a+b+1pl+ (l-Pk)

Hence for the last urn, prove that
a
P»=2%b  [Punjab Univ, B.Sc.(Maths Hons.),1988]

Solution. The event of drawing a white ball from the kth urn can, materialise
in the following two ways:

(i) The ball transferred from the (k — 1)th urn is white and then a white ball is
drawn from the kth urn,

(ii) The ball transferred from the (k — 1)th urn is black and then a white ball is
drawn from the kth urn.

+1
a+b+1’
since the probability of drawing a white ball from the (k— 1)th umnis p:-, and
then the probability of drawing white ball from the kth urn is
a+1
a+b+1°
Since the probability of drawing a black ball from thé (k— 1)th um is
[1 = pe-1] and then the probability of drawing a white ball from the kth urn is
a
a+b+1’
the probability of case (ii) is given by
2 [1-pii]
a+b+1
Since the cases (i) and (ii) are mutually exclusive, we have by addition theorem
of probability

The probability of case (i) is pi-1 X

4 —1-per)

1
P av b1 P b e (*)
=1 ‘
P vl P T e -
Replacing & by &+ 1.in (*) we get the required result.
Changing kto k- 1,k -2, ... and s on, we get
.a
Pt = arer 1 P arben -
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P b1 PO T -3
— +—2 (k- 1.
P b 1 P ar bt =)
But p: = Probability of drawing a white ball from the first urn = —%; .
e 1
Multiplying (1) by 1, (2) by P 3) by a+b+ 1 ]i ,and (k- 1)th

-2
2 tbt1 I and adding, we get

equation by (

A
a 1 1
P = (a+b+l]. pl+a+b+l[1+a+b+1+(a+b+l)7'+

" 1 -2
a+b+1
-1
. 1_[;
___( 1 ]' x-8 a a+b+1

a+b+1 @+b) a+b+1 1
a+b+1

a 1 "+ a [1_ 1 "]
a+bla+b+1 a+bd a+b+1
a_ 1 -1 +{1_ 1 -1}

a+blla+b+1 a+b+1

a

== k=120

Since the probablhty of drawing a white ball from the kth urn is independent
of k, wehave

a
a+b’

pn =

Example 4-56. (i) Let the probability p» that a family has exactly n children
beap whenn>landp,=1-ap(l+p+p*+..). Suppose that all sex distribu-
tions of n children have the same probability. Show that for k > 1, the probability
that a family contains exactly k boys is2 o. . p Y@ -p)th.

(ii) Given that a family includes at least one boy, show that the probability
that there are two or more boys is p/(2 - p).



Theory of Probability 4101

Solution. We are given

p» = P [that a family has exactly n ¢hildren]
=oap", n21
and p,=1-ap(l £ptpi+.)

Let E; be the cvent that the number of children in 4 family is j and let A be
the event that a family contains exactly & boys. Then
P(E)=p,; j=0,1,2,..
Now, since cach child can have any of the two sex distributions (either boy or
girl), the total number of possible distributions for a'family to fiave ’j children
is2.

. Cy .
P(A|E) =.7‘-.12k

and P(A) = f— PE)PAIE) = f— P;P(AIE;)

Zule] |
) fi:k (2] Ve
oo pyer F
=o X “’Cn (E]‘- . Putj-k=r]
r=0 .
pI “ k+r (p]’ .. R P
=0 | = p2 C |z [- C,= o |
[2 r=0 2 . *
We know that ‘ sl '

-nC ( )r R4r- IC = (_ l)r’.-cnc,‘: n:'-IC' .
(- ), -(t.l)C - “'C, -

Hence
p = r -(k+1) p ’
PA) =a|=]| = 1)y, c[.—]
2 r=0 2
pl o ) / p .
=ol|= z (l#I)C [—'-‘x—‘]
2 '-\0 2 / y -
p (k+1) .
-«(3[-5]
.p k 2"31 de‘
= -2- =

@-p" T @t

(b)Let B denote the event that a family includes at least one’boy and C denote
the event that a family has two or more boys. Then
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©o

P (B) = Z P [lamily has exactly k boys]
k=1

> 2ap 20 o [ p ]‘
=3 = T | =
k=1 Q2=-pT 2-p 41 \2-p
_20  _PQ-p ap
2-p 1-[p/2-p)] (A-p)(2-p)

P(C)-= X P [family has exactly k boys)
k=2

00

-y _2ep _ 2e E{ 4 I
k=2 @=p)y*" 2-p 42 \2-p
_2a _@-p* __ op
2-p " 1-[p/2-p)) (2-pyY(1-py
SinceCcBandBNC=C,P(BNC)=P(C) = PB)P(C|B)=P(C)
" Therefore,

PO___op  (-p@-p__»p
P®B) @2-p)’-p) ap 2-p
Example 4-57. A slip of paper is given to person A who marks it either with
aplus sign or a minus sign; the probability of his writing a plus sign is 1/3. A passes
the slip to B, who may either leave it alone or change the sign before passing it to
C. Next C passes the slip to D after perhaps changing the sign. Finally D passes it
to a referee after perhaps changing the sign. The referee sees a plus sign on the
slip. It is known that B, C and D each change the sign with probability 2/3. Find
the probability that A originally wrote a plus.
Solution. Let us define the following events. .
E,: Awroteaplussign; E,:A wrote a minus sign
E : The referee observes a plus sign on the slip.
We are given: P (E\)=1/3, P(E;))=1-1/3=2/3
We want P (E, | E), which-by Bayes'rule is given:by :

_ P(E)P(E|E) . _ .
P D= P @Y PEIE)+P EN P EIED -0
P (E | E;) = P [Refetee observes the plus sign given that ‘A’ wrote
the plus sign an the slip]
= P [(Plus sign was not changed at all) U (Plus sign was
changed exacily twice in.passing from ‘A’ to referee
through B, C and D )]
=P(Esu Ey, (say).
=P (Ey) + P (Ed)

P(C|B)=

) . (i)
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Let A,, A; and A, respectively denote the events that B, C and D change the
sign on the slip. Then wg arc given
PA)=P(A)=P(A)=2/3 ; P(A)=P (Zz)=P(Ka)= 1/3
We have
PEN=PAINANA)=P@A)P (A) P (A3)=(1/3) = 1/27
P (E)) =P [(A1 A: As) U (A1 A2 45) U (A1 A2 A5)]
=P (A, AzAg) +P (A, Kz Ay + P (A| Az As)
=P (A)P(A)P (Zs) +P (A) P (A2) P (A3) + P (A1) P (Ay) P (Ay)
221 212 122_4
©3'3'373'3'373°3'3°¢9
Substituting in (i) we gel

P(E|E)= 27 % ?] ...(iii)
Similarly,
P (E |.E;) = P [Referee observes the plus sign given that ‘A’ wrote minus
sign on the slip)

= P [(Minus sign was changed exactly.once)
U (Minus sign was changed thrice)]
=P (Es v Ey), (say),
=P (Es) + P (Ee) (iv)
P (Es) =P [(A1 A2 A3) U (A1 A2 A3) U (A1 A2 A3)]
=P (A) P (&) P (&) + P (A1) P (A7) P (A3) + P (A1) P(AD P (Ay)

211 121 1122
=3°3:3%3:3:373:3:3%9
P (Es) = P (A1 A2 Ay) P(A)P(A)P(A)——z-gg—-s—
6) = 1A2A3) = 1 2 3—33~3—27
Substituting in (iv) we get :
2.8 _14
P (E|Ey) 9t =77 (V)
Substituting from (iii) and (v) in (z {) we get :
13
_ 3 27 _ 13 13
FEIB=T T 2 14 B8 4l
321 3727 N

Example 4-58. Three urns of the same appearance have the fo‘fféwing
proportion of balls.

-First urn > 2black 1 white
SecondUrn  : 1 black 2 white
Third urn ;2 black 2 white
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Qne of the urns is.selected and one ball is drawn. It turns out to be white. What
is the probability of drawmg a white ball again, the first one not having been
returned?

Solution. Lct us define the events:

Er= The'event of sélection of ith um, (i =12,3)
and A= Theevent of drawing a white ball.

Then

P(E) = P(Ey) = P(Es) = 1/3

and P(A[E) = 1/3,P(A[E;) = 2/3andP (A|E;) = 172
Let C denote the future event of drawing another white ball from the umns.
Then .

P(CIE:nA) = 0,P(C|E:nA) = V2,and P (C|EsnA) = 1
3

"L P(E)PAIE)P(CIENA)
i=1

P(_CIA)= 3
2 PE)PAIE)
1 1 l 2 1 1 1 1
_53°+33§+525_1
- 1 1,1 2,11 =
3:373°3%3:2

MISCELLANEOUS EXERCISE ON CHAPTER 1V

1. Probabilities of occurrence of n independent events E,, Es, ..., E, are py,
P2, ..., parespectively. Find the probability of occurrence of the compound event in
which Ej, Ey, ..., E, occur and E, .1, E, . 5, ..., E, d0 DOt Occur.

r n
Ans. I p;x T (1-p)
i=1 i=r+l
2. Prove that for any integerm > 1,
m m m

(a) P( A A)SPA)SP( UA)S ZP(A)
i=1 =] =1
[} o m i i=
(b) P( nA)21~ L P(A)
i=1 . i=]
3. Esuablish the inequalities :
P(ANBNC) < P(ANB) < P(AUB) < P(AUBUC) < P(A) + P(B) + P(C)
4. Let A, A, ...,A. be mutually independent events with P-(A)=ps,
k=1,2,..n
Let p be the probability that none of the events A,, A3, ..., Av-occurs. Show

that
n n
p= I (l-pn)Sexp[— Zm}
k=1 k=1
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Usc the above relation tg compute the probability that in six tosses of a fair dic, no
aces are obtained". Compare this with the upper bound given above. Show that if
each p, is small compared, with n, the upper bound is a good approximation.

5. A and B play a maich, the winner being the one who first wins two games
in succession, no games being drawn. Their respective chances of winning a
particular game are p : q. Find

“ (i) A’sinitial chance of winning.
(ii) A’schance of winning after having won the first game.

6. A carpenter has a tool chest with two compartments, each one having a
lock. He has two keys for each lock, and he Keeps all four keys in thé ‘same ring.
His habitual procedurc in opening a compartment is to select a key at random'and-
try it. If it fail$, hé selects one of the remaining three and tries it and so on. Show
that the probability that he succeeds on the first, second and third try is 1/2,1/3, /6
respectively. (Lucknow Univ. B.Sc., 1990)

7. Three players A, B and C agree to play a series of games observing the
following rules : two players participate in each game, while third is idle, and the
game is to be won by one of them. The loser in each game quits and his place in
the next game is taken by the player who was idle. The player who succeeds in
winning over both of his opponents without interruption wins the whole series of
games.’ . -

Supposing the probability for each player to win a single game is 1/2, and that
the first game is played by A and B, find the probability for A, B and C respectively
to win the whole series if the number of games is unlimited.

Ans. 5/14,5/14,2/7 |

8. In-a certain group of mathematicians; 60 per cent have insufficient back-
ground of modern Algebra, 50 per cent have inadequate knowledge of Mathemati-
cal Statistics and 80 per cent are in either one or both of the two categories. What
is the percentage of people who know Mathematical Statistics amiong those who
have a sufficient background of Modern Algebra? (Ans. 0-50)

9. (a)If A has(n+1) and B has n fair coins, which they flip, show that

the probability that A gets more heads than B is %

(b) A studentis given a column of 10dates and column-of 10 events-and is
asked to match the correct date to each event. He is not allowed to use ariy item
more than once. Consider the case where the student knows.how to match four of
the items but he is very doubtful of the remaining six. Hé.decides to:match these
al random. Find the probabilities that he will correctly match (i) all the items,
(ii) atleast seven of the items, and (iii) at least five.

Ans. (a)gl—!. (b)-‘}%. (c) l—gl—!

10. An astrologer claims that he can predic before birth the sex of a baby just
to be born. Suppose that the astrologer has no real power but he tosses a coin just
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once before every birth and if the head turns up he predicts a boy for that birth and
if thetail turns up he predicts a girl. Let p be the probability of the event thatat &
certain birtti a male child is born, and p’ the probability of a head turning up-in a
single toss with astrologer’s coin. Find the probability of a correct prediction and
that of at least one correct prediction in'n predictions.

11. From a pack of 52 cards an even number of cards is drawn. Show that the
probability of half of these cards being red is:

521726 Y- 117 2" - 1)

12. A sportsman’s chance of shooting an animal at a distance r (> a) is
a‘/r*. He fires when r= 2a, and if he misses he reloads and fires when
r = 3a, 4a... If he misses at distance na, the animal escapes. Find.the odds against
the sportsman.

Ans. n+1:n-1

2
Hint. P [Sportsman shoots at a distance ia] = (—aT = i}
ia)” i

= P [Sportsman misses the shot at a distance ia] = 1 - —12-
i

P [Animal escapes] = I1 [l—ii,]= I [[ﬂ][ﬂ]]

i=2 i=2 ¢ '

n . 3 n . .
=1 [z—.l] H [zfl]=n+l
i=2\ 1 Ji=2\ 2n

"2""1 : [ 1- "2*"1 ]: (a+1).: (1—1)

13. (a) Pataudi, the captain of the Indian team, is répoited to have observed
the rule of calling ‘heads’ every time the toss was made during the five' matches of
the Test series with the Australian team. What is the probability of his winning the
toss in all the five matches?

Ans. (1/2)

How will the probability be affected if ~

(i) he had made a rule of tossing a coin privately 1o decide whether to call
"heads" or "tails" on each.occasion.

(ii) the factors determining his choice were not predetermined -but he called

-out whatever occurred to him on the spur of the moment?

(b) A lot contains 50 defective and 50 non-defective bulbs. Two bulbs are
drawn at random one at a-time, -with replacement. The events A, B. CC are
defined as

Requiréd ratio =

= (The first bulb is defective)
B = {The second bulb is non-defective)
C'= {The two bulbs are both defective or both non-defective)
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Determine whether

(i)A, B, C are pairwise independent, ’

(ii)A. B, C are independent.

14. A, B and G are three umns which contain 2 white, 1-black, 3 whité, 2 black
and 2 white and 2 black balls, respectively. One ball is drawn from um A and put
into the urn B; then a ball is drawn from um B and put into the urn C. Then a ball
is drawn from um C. Find the probability that the ball drawn is white.

Ans. 4/15. '

15. An um contains a white and b black balls and a series of drawings of one
ball at a time is made, the ball removed being retrurned to the urn immediately after
the next drawing is made. If p, denotes the probability that the ath ball drawn is
black;, show’ that

pa=(b=pa-r)/@+b-1).

Hence find p, .

16. A person is to be tested to see whether he can differentiate between the
taste of two brands of cigarettes. If he cannot differentiate, it is assumed that the
probability is one-half that he will identify a cigarette correctly: Under which-of
the following two procedures is there less chance that he will make all correct
identifications when he actually cannot différentiafe betieen the two brands?

(i) The subject is given four pairs each containing both,brands-of cigarettes
(this is known to the subject), he must identify for each pair which cigaretie
represents each.brand.

(ii) The subject is given eight cigarettes and is told that the first four are 6f one
brand and the last four of the other brand.

* How do you explain the difference in results despite the fact that eight
cigarettes are tested in each case?

Ans. (i) 1/16 (ii) 1/2 s

17. (Sampling with replacement). A sample of size r is taken from a
population of n people. Find the probability U, that N given people will be included
in.the:sample. - '

N .
Ans. Ur= Z (- 1) [N][l-ﬂ]
m=0 m n

18. In a lottery m tickest are drawn at a time out of the total number of n
tickets, and returned before the next drawing is made. Show that the chance that in
k drawings, each of.the numbers.1, 2, 3, ..., n will appear at'least once is given by

OGN (=i

{Nagpur Univ. MSc. 1987)
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19.'In a certain book of N pages, no page contains more than four errors, n,
of them contain one error, n; contain two errors, ny contain three errors and n,
contain four errors. Two copies of the book arc opened at any two given pages.
Show the probability that the number of errors in these two pages shall notexceed
five is

l—.% (32 + na2 + 2na ny + 203 )
N

Hint. Let E; 1 : the event that a page of first book contains i errors. .
and E; Il : the event that a page of second book contains { errors.
P (No. of errors in the two pages shall not exceed S)
=1 =P[EIENM+E1EJI+EJE
+E | EsI+ EJNEs I+ E(1E, 1T,
20. (a) Of three independent events, the chance that the first only should
" happens is a, the chance of the, second only is b and the chance of the third only
“is c. Show (hat the independent chances of the three events are rcspecuvcly

a b [

' - “a+x'b+x'c+x
where x is the root of the equation

! (ai&—.x)(b+;t)(c+x)'=x2

Hint. P (Es NExNE3)=P(E))[1-P(EDI[1-P (E5)] =a ! w(*)
PEN 'Ex N Es) [1 -P(E)IP(E)[1-P(Ey)]=b w(**)
PENENE)=[1-PENI-PENPE)=c .(+%

Mumplymg (*),(*+) and (+++), we gct
P(E)P (Ez)f' (Es) x? = abc,

where.x=[1- P (E)] [1~ P (Ey)] {1 —.P (E3)]

Multiplying (*) by [1 — P (E1)],-we get
P(E)= # ,and so on.

(b) Of three independent events, the probability that the first only should
happeris is 1/4, the probability that the second only should happen is 1/8, and the
probability that the third only should happen is 1/12. Obtain the tinconditional
probabilities of the three events.

Ans. 172,173, 1/4.

(c) Atotal of n shells are fired at a target. The probability of the ith shell hitting
the target is pi;i=1,2,3,..,n. Assuming that the n firings are n mutually
independent events, ﬂnd the probability that at least two shells out of " hit the
target. : [Calcutta Univ. B.Sc.(Maths Hons:), 1988]

(d) An um contains M _balls numbered 1 to M, where the first K balls are
defective and the remaining M ~ Ki are non-defective. A sample, of a balls is
drawn from the um. Let A, be the event that the sample of'» balls contains exactly
k defectives. Find P(A;) when the sample is drawn (i) with replacement and,
(ii) without replacement. [Delhi Univ. B.Sc. (Maths Hons.), 1989)
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21. For threc independent events A; B and C, the probability for A to occur-is
a, the probability thatA, B and C will not occur is b, and the probability that at least
one of the three events will not occur is ¢. If p denotes the probability that C occurs
but neither A nor B occurs, prove that p satisfies the quadratic equation

ap*+lab-(1-a)@+c-Dlp+b(1-a)(1-¢)=0
2
and hience deduce that ¢ > ! -('la_ :)ab

Further.show: that the probability of occurrence of-C is p/(p + b), and that of
B’s happening is (1 —.c) (p + b)/ap.

Hint. Let P(A)=x, P(B)=y and P (C)=:

Then - x=a, (1-x)(1-yY)(1-2)=»b, -xyz=c
and ‘s p=z(1-x)(Li-y)

Elimindtion of x, 'y and z gives quadratic equation in p.

22. (a) The chance of success in each trial is p. If p; is the probability that
there are even number of successes in k trials, prove that

pt—p+pt 1(1-2p)

Deduce that p:=1{1+(1-2p)']

(b) If a day is dry, the conditional probability that the following day wiil also
be dry is p, if a day is wet, the conditional probability that the following day will
be dry is p’. If u. is the probability that the nth day will be dry, prove that

~(-pP)in-1-p'=0;n22

If the first day is dry,p=3/4 and p’ ='1/4, find w. .

23. There are n similar biased dice such that the probability of obtaining a 6
with each one of them is the same and equal to p. If all the dice are rolled once,
show that p,, the probability Lhat an odd number of 6’s is obtained satisfies the
difference equdtion

Pat(2p— 1)‘P~-IT=P -
and hence derive'an explicit expression for p..
" Ans, p =il (- 2p)")

24. Suppose that each day the weather.can be uniquely classified as ‘fine’ or
‘bad’. Suppose further that the probability of having fine weather on the last day
of a cerain yéar is Po and we have the probability p'that the weather on an arbitrary
day will be.of-the same kind as on the preceding day. Let the probability of having
fine weather on the nth day of the following year be P,. Show that

Pi=(2p-NDPia+(1-p) ~

Deduce that ) .
~oop_1(p 1)1 7
Py=(3p - 1) (Po 2]+2 o

25. A closet contains n pairs of <hocs. If 2r shoes are chosen at random
(with 2r<n ), what is the probability. that' there will be (i)no complete pair,
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(ii) exactly one complete pair, (iii) exactly two complete pairs among them?
Hint. (i) P(no complete pair)=[ n )2"’ & [ 28 )

2r
(ii) P(exactly one complete pair)=n| . F Ygr-2, (20 '
2 -2 2r
. n=2 \or-4, ( 2n
and (iii) P(exactly two complete paus)=[ 2 )[ 2r—4 )2 + [ 2 ]

26. Show -that the probability of getting no right pair out of n, when the left
foot shoes are paired randomly with the rigth foot shoes; is the sum of the first
(n + 1) terms in the expansion of e™'.

27. (a) In a town consisting of (n + 1) inhabitants, a person narrates a rumour
to a second person, who in turn narrates it to a third person, and so on. At each step
the recipient of the rumour is chosen at random from the n available persons,
excluding the narrator himself. Find the probability. that the rumour will be told r
times without:

(i) returning to the originator,
(ii) being namrated to any person more than once.

(b) Do the above problem when, ateach step the rumour is told by one person
to a gathering of N mndomly chosen people.

-1 ,
Ans. (a) (i) n(n nl) [l _%] (i) n(n- l)(n—?):..(n-,(+ 1)

n’
S &)
(6) (i) [1-§j (i) e

28. What is the probability that (i) the birthdays of twelve people will fall
in twelve different calendar months (assume equal probabilities for the twelve
months) and (ii) the birthdays of six people will fall in exactly two calendar months?

Hint, (i) The birthday of the first person, for instance, can fall in 12 different
ways and so for the second, and so on.

-, The total number of cases = 12'2,

Now there are 12 months in which the birthday of one person can fall and 11
months in which the birthday of the second person can fall and 10 months for
another third person, and so on.

= The total number of favourable cases = 12.11.10...3.2.1

Hence the required probability = &
12'2

(ii) The to(a.l number of ways in which the birthdays of 6 persons can fall in
any of the month = 125,
12
(2)(2-2)

The required probability = T
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29. An elevator starts with 7 passengers and stops at 10 floors. What is the
probability p that no two passengers leave at the $amé floor? _
[Delhi Univ. M.C.A., 1988]
30. A bridge player knows that his two opporients have exactly five hearts
between two of them. Each opponent has thirteen cards. What is the probability
that theré is thréé-two split on the hearts (that is one player has three hearts and the
other two)? [Delhi Univ. B.Sc.(Maths Hons.), 1988]
31. An um contains 2 white and 2 black balls. A ball is drawn at random. If
itis white, it is ridt replaced into thé um. Otherwise it is replaced along with another
ball of the same colour. The process is repeated. Find the probability that'the third
ball drawn'is black. [Burdwan Univ. B.S¢. (Hons.), 1990]
Ans. 2
30
32. There is a series of n ums. In the ith: umn there are i ‘white and (n — i)
black balls, i='1, 2, 3, ..., k. One um is chosen at random and 2 balls are drawn
from it. Both tumn out to be white. What is the probability that the jth urn was
chosen, where j is a particular number between 3 and n.
Hint. Let E; denote the event of selection of jth umn, j=3,4,..,nand A
denote the event of drawing of 2 white balls, then
i \( =1 i e 1(i)fi-1
ron={i)) pe=trens B3

P (Ej|A)= n%[ﬁ] n-1

E )RS

33. There are (N + 1) identical urns marked 0, 1, 2, ..., N each of which
contains N white and red balls: The kth umn contains k red and N — k white balls,
(k=0;1,2,... N). Anum is chosen at random and n random drawings of a ball are
made from it, the ball drawn being replaced after cach draw. If the balls drawn are
all red, show that the probability that the next drawing will also yield a red ball is
approximately (n + 1) (n + 2) when N is large.

34. A printing machine can print n letters, say o, 0z, ..., O . It is operated
by electrical impulses, each letter being prodyced by a different impulsé. Assume
that p is the constant probability of printing the correct letter and-the impulses are
independent. One of the n-impulses, chosen at random, was fed into-the machine
twice and both times the letter o was printed. Compute the-probability that the
impulse chosen was meant'to print o,. [Delhi Univ. M.Sc.(Stat.), 1981]

Ans. (n-1)p/(np*-2p+1)

3S. Two players A and B agree to contest a match consisting-of a-Series of
games, the. match to.be won by the player who first wins three games, with the
provision that if the players win two games each, the match is to continue until it
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is won by one playcr winning two games more than his opponent. The probabililty
of A winning any given game is p, and the games cannot be drawn.
(i) Prove thatf (p), the initial probability of A winning the match is given by:
f@)=p*@-5p+2p")/(1=2p+2p")
(ii) Show that the equation f(p).= p has five real roots, of which three are
admissible values of p. Find these three-roots and explain their significance.
[Civil Services (Main), 1986]
36. Two.players A and B start playing a series of games with Rs. a and b
respectively. The stake is Re. 1 on a game and no game can be drawn. If the
probability of A winning any game is a constant p, find the initial probability of
+his exhausting the fund$ of B or his own. Also show that if the resources of B
are unlimited then
(i) A is certain to be ruined if p= 12, and
(ii) A has an even chance of escaping ruin if p=2"*/(1+2'°).
Hint. Let u, be the probability of A’s final win when he has Rs, n.
Then Un=pltni1+ (1 - pluta-i Where u,=0 and 1s=1

um—u.=[1—;2](u.—u--1)

Hence ths1— ln = [1—;2 I 1, by repeated application,

ow efi-(52]/ [-(52)

Hence using i s = 1, “-=[ 1 ‘[1_;2]] / [ : _[1_;2 )b]

-. Initial probability of A’s win is u, = —ptﬁ—:’)):—\»s - p

s

Probability.of A’s ruin = 1 —1ig, .
For p=%,u = —-—>Oasb->°oandforp¢1/‘2 U =

b
if p=2""7(1+2"%.
37. In a game of skill a playe( has probability 1/3, 5/12 and 1/4 of scoring 0,
1-and 2 points respectively at each trial, the game terminating on the first realization
of a zero score at a trial. Assuming that-the trials are independent, prove that the
probability of the,player obtaining a total score of n'pointsis '

3(3Y,4( 17 -
1314 390 3 "
Hint. Event can materialize in-the two'mutually éxclusive ways::

(i) at the (n — 1)th.trial, a score o (n — 1),points, is:obtained and a-score of 1
point is obtained at the ath trial. . W

u.:
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(ii) at the (n — 2)th trial, a score of (n — 2) points is obtained and a score of 2
points is obtained at the last two trials.
1 1 5_35

1
Tgl-t * gt-s Whertlo=7, =7 =q¢

Also uﬁ“[%-;]ua l+‘]‘“a 2 = “n"';un 1—%[“.-14'%“»-1]

This equation can be solved as a homogeneous difference equation of sccond
order with the initial conditions

115 5 .
=3 M=3-1273

38. The following weather forecasting is used by an amateur forecaster. Each
day is classified as ‘dry’ or ‘wet’ and the probability that any given day is same as
the preceding one is assumed to be a constant p, (0 < p < 1). Based on past records,
itis supposed that January 1 has a probability B of being dry. Letting

B.= Probability that nth day*of the year is dry, obtain an expression for B, in
terms of B and p. Also evaluate lim- B,.

Hence u, =

n—yoo

Hint. Ba=p.Bact + (1=p)(1=Ba-t)

= Be = (2p=1)PBa-1+ (1=-p); n=23,4,.
Ans. Ba=@p-1Y""B-¥) + ¥ ; limB.="1

n — oo

39. Two ums contain respectively ‘a white and b black’ ‘and ‘b white and a
black’ balls. A series of drawings is made according to the following:rules:

(i) Each time only one:ball is drawn and nmmcdnately retuined to the same um
itcame from. .

(ii) If the ball drawn is white, the next drawing is made from the first urn,

(iii) If it is black, the next drawing is made from thé second urn.

(iv) The first ball drawn comes from the first.um.

What is the probability that nth ball drawn will be white?

Hint. p, = P [Drawing a white ball at the rth draw).

p"éd—ﬁbp"“ +b (1- Proa )

, .
= a+y Pt T - '

- 1 a-b N
Ans. =t a[TbI :

40. If a coinis tossed repeatedly; shbw that the probability of getung nrheads
before n tails is :
1 m+n-1
2 m+na-1 Cio "« ' )
i=m [Burdwan Univ. (Maths Hons.), 1991)

W
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OBJECTIVE TYPE QUESTIONS
1. Find out the correct answer from group Y for each item of group X*

Group X GroupY
(a) AtleastoneoftheeventsAorB (i) ANB)U(ANB)U(ANB)
occurs.
(b) Neither A nor B occurs. (ii) AUB)-(ANB)
(c) Exactly oneof theeventsAorB (iii) AcB
occurs. (iv) BcA
(d) Ifevent A occurs, so does B. (v) [A-(AnB)]uU[B-(ANB)]
(e) Not more than one of theevents A (vi) ANB
or B occur; (vii) ¥—(AUB)
(viii) AUB
(ix) 1-(AUB)
I1. Match the correct expression of probabilities on the left :
(a) P (9), where ¢-is null set (i) 1=P(A)
(b) P(A|B)P(B) (i) P(ANB)
(c) P(A) (iii) P (A)-P(ANB)
(d) P(ANB) (iv) 0
(e) P(A~B) (v 1-P(A)-PB)+P(ANB)

(vi) P(A)+P(B)-P(ANB).
1IL. Given that A, B-and"C are mutually exclusive-events, explain why the
following are not permissible assignments of probabilities:
v (i) PAY=024, P(B)=04andP (AU C)=02
(ii) P(A)=04, P (B)=0-61
(iii) P(A)=06, P (ANB)=05
IV. In each-of the following, indicate whether events A and B are :
(i) independent, (ii) mutually. exclusive, (iif) dependent but not muiually ex-
clusive.
(a) P(ANB) =0 (b). P(AB) = 03, P(A) = 045
(c) P(AUB) = 085, P(A) =03, P(B) = 06
(d) P(AUB) =010, P (A) = 0.5, P(B) = 04
(e) P(AUB) = 09C, P(A|B) = 08, P(B) = 0-5.
V. Give the correct label as answer like a or b'etc., for the following
questions:
(i) The probability of drawing any one spade card from a pack of cards is
1 1 4 ! !
(@) & (b) 5 ()4 (d) 3
(ii) The probability of drawing one ‘white ball from a'bag:containing.6 rcd,
8 black, 10 yellow and 1 green balls is

L @ B0 @1 @X  @f
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(iii) A coin is tossed three times in succession, the number of sample points
in sample space is
(a) 6 (b 8 (c) 3
(iv) In the simultaneous tossing of two perfect coins, the probability-of
having at least one head is
3

@5 i @3 @1

(v) In the simultaneous tossing of two perfect dlce the probability of
obtaining 4 as the sum of the resultant faces is
3 2
(a) = 12 (b) '12 (c) 33 @) T
(vi) A single letter is selected at random from the word ‘probability’. The
probability that it is a vowel is v
@F L ©f @o
(vii) An um contains 9 balls, two of which dre red, three blue and four
black. Three balls are drawn at random. The chance that they are of the same
colour is

@ ®3 (@ (@

(viii) A number is choscn at mndom among the first 120 natural numbers.
The probabnhty of the number chosen being a multiple of 5 or 15 is

1
(a) g (b 3 (c) '1?
(ix) If A-and B are mutually exclusive events, then
(a) P(AUB)=P (A).P (B)
(b) P(AUB)=P(A)+P(B), (c) P(AUB)=0.
(x) If A and B aretwq independent events, -the probabllny ‘that both A
and B occur is and the probability that neither of them occlurs 1s =. The prob-

~

ability of the occurrence of A is:
@3, (b3, (Qi @ .
VL. Fill in the blanks : '
(i) Two events are gaid to be equally likely if ......
(ii) A setof events is said to be independent if ......
(iii) If P(A) ..P(B).P(C)=P(ANBNC),thentheevents A, B,C are ......
(iv) Two events-A ‘and B are mutually éxClusive if P (AN-B)=... and are
independent if P (A N B) =
(v) The probability of geuing a multiple of 2 in a throw of a dice is 1/2 and
of getting a multiple of 3 is 1/3. Hence probability of getting a multiple of 2 or 3

(vi) Let A and B be independent events and suppose the event C has prob-
ability Oor 1. Then A, Band C are ...... events.

(vii) If A, B, C are pairwise independent and A is independent of BUC,
then A, B, C are ...... independent.
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(viii) A man has tossed 2 fair dice. The conditional probability that he has
tossed two sixes, given that he has tossed at least one six is ......
(ix) Let A and B be two events such that P (A) =0.3 and P (A uUB)=08.
If A and: B are independent events then P (B) =
VILI. Each of following statements is either true or false. If it is true prove it,
otherwise, give a counter example to show that it is false.
(i) The probability of occurrence of at least one of two events is the sum
of the probability of each of the two events.
(ii) Mutually exclusive events are independent.
(iii) For any two events A and B, P (A N B) cannot be less than cither P (A)
or P (B).
(iv) The conditional probability of A given B is always greater Lhan P (A).
(v) If the occurrence of an event A implies the occurrence of another event
B then P (A) cannot exceed P (B).
(vi) For any two events A and B, P (A U B) cannot-be greater then either
P (A) or P (B).
(vii) Mutually exclusive events are not independent.
(viii) Pairwise independence:does not necessarily imply mutual independ-
ence.
(ix) Let A and B be events neither of which, has probabnlny zero. Then if A
and B are disjoint, A and B are mdependent
(x) The probability of any évent is always a proper fraction.
(xi) If0<P(B)<] sothatP (A|B) and P (A |B) are both defined, then
PA)=P(B)P (A|B)+P (B)P (A|B).
(xii) For.two events A and B if
P(A)=P(A|B)=1/4and P (A | By= 1/2, then
(a) A and B are mutually exclusive.
“(b) A and B are independent.
(c) A is asub-event of B.
(d) P (A|B) =3/4, \[Dethi Univ. B.Sc.(Stat, Hons.), 1992}
(xiii) Two events can be independent and mutually exclusive simultaneously.
(xiv) Let A and B be events, neither of which has probability zero. Prove or
disprove the following :
(a) If A and B are disjoint, A.and B are independerit.
(b) If A and B are independent, A and B are disjoint.
(xv) IfP (A)=0, then A=¢.



CHAPTER FIVE
Random Variables — Distribution Functions

5-1. Random Variable. Intuitively by a random variable (r.v) we mean a
real number X connected with the outcome of a random experiment E. For
example, if E consists of two tosses of a coin, we may consider the random varisble
which is the number of heads ( 0, 1 or 2).

Qutcome : Hil HT TH T
Value of X : 2 1 1 0

Thus to each outcome ® , there corresp:nds areal number X (w) . Since the
points of the sample space S correspond to outcomes, this means that areal number,
which we denote by X (w), is defined for each w € §. From this standpoint, we
define random variable to be a real function on S as follows:

" Let S be the sample space associated with a given random experiment. A
real-valued function defined on S and taking values in R (— o , o0 ) is called a
one-dimensional random variable. If the function values are ordered pairs of real
numbers (i.c., vectors in two-space) the function is said to be a two- dimensional

random variable. More generally, an n-dimensional random variable is simply a
function whose domain is S and whose range is a collection of n-tuples of real
numbers (vectors in n- space).”

For a mathematical and rigorous definition of the random variable, lct us
oconsider the probability space, the triplet (S, B, P), where § is the sampie space,
viz., space of outcomes, B is the o-field of subscts in §, and P is a probability
function on B.

Def. A random variable (r.v.) is a function X (w) with domain § and range
(o<, o0) such that for every real number a, the event [0 : X (0) < a] € B.

Remarks: 1. The refinement above is the same as saying that the function
X (w) is measurable real function on (S, B).

2. We shall need-to make probability statements about"a random variable X
such as P (X<a). Forthe simple example given above we should write
P{X < 1) =P (HH, HT, TH}.= 3 /4. Thatis, P(X < a) is simply the probability
of the set of outcomes  for which X (0) < aor

PX<a)=P{0:X(®< a)
Since Pis ameasure on (§,B) i.e., P is defined on subsets of B, the above probability

will be defined onlyif [ @: X (w)<a) € B, which implies that X(w) is a Measurable
function on (S,B).

3. One-dimensional random variables will be denoted by capital letters,
XYZ,.elc. A typical outcome of the experiment (i.e., a typical clement of the
sample space) will be denoted by o or e. Thus X (w) represents the real number
which the random variable X associates with the outcome ® . The values whick
X,Y,Z, ... etc., can assume arc denoted by lower case letters viz., x, y, z, ... elc.
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4, Notations. If x isa.rcal number, the sctof all @in S suchthat X(®)=xis
denoted briefly by writing X = x. Thus

P(X=x)=Plo: X (@)=x}
Similarly P(X<al=Plw:X (@) € [-,a]}
and Pla<X<b)=P(0:X(w)e (abl)
Analogous meanings are given to
P(X=aorX=b)=P{(X=a)u(X=b)},
P(X=aandX=b)=P{(X=a)n(X=b)}, et.
Illustrations : 1. If a coin is tossed. then
S= {0)1,0)2} where o= H, o,= T
1, if o = H
f(((o)= 0,if o =T
X () is a Bernoulli random variable. Here X () takes only two values. A random
variable which takes only a finite number of values is called single.
2. An experiment consists of rolling a die and reading the number of points
on the upturmned face. The most natural random variable X to consider is
Xw=0;0=1,2,..,6

- If we are interested in whether the number of points is even or odd, we consider
a random. variable ¥ defined as follows :

_ 10, if o is even
Y(o)= {l, if o is odd
3. If a dart is thrown at a circular target, the sample space S is the set of all
points w on the target. By imagining a coordinate system placed on the target with
the origin at the centre, we can assign various random variables to this experiment.
A natural one is the two dimensional random variable which assigns to the point
o, its rectangular coordinates (x,y). Another is that which assigns o its polar
coordinates (r, 0 ). A one dimensional randor_n variable assigns to each @ only one
of the coordinates x or y (for cartesian system), r or 9 (for polar system). The event
E, "that the dart will land in the first quadrant” can be described by a.random
variable which assigns to each point'w its polar coordinate 9 so that X (®) = 6 and
thenE={0:0<X (@) <n/2). :
4. If a pair of fair dice is tossed then § = {1,2,3,4,5,6}x{1,2,3,4,5,6} and
n(S)=36. Let X be a random variable with image set
X(S) = { 1’2’3’4’516]
PX=1)=P(1,1} = 1/36 )
PX =2) = P{(2,))(22)(1,2)} =3/36
P(X =3)=P{(3,1).3,2),(3,3),(2,3).(1,3)} = 5/36
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P (X=4)=Pr(@4,1),4,2),(4,3),4.4),(3,4),(24,(1,4))=7/36
Similarly  P(X=5)=9/36and P (X =6)=11/36
Some theorems or Random Variables. Here we shall state (without prool')
some of the fundamental results and theorems on random variables.
Theorem 5-1. A (unction X(®) from S to R (- o, ) is a random variable if
and only if
{(w:X(w)<a} € B

Theorem 5-2. If X; and X, arevandom variables and C is‘a constant then
CXi, X, + X2, X1X; are also random variables.

Remark. It will follow that C,X; + C>X; is a random variable for constants
C,and C,. Inparticular X, — X, isar.v. &
Theorem 5-3. If {X,(w),n 21} arc random variables then
sup Xn(w), inf Xa(®), limsup X, () and lim inf X, (®) are-all ran-
n n

n— o n— oo
dom va:iables, whenever they are finite for all ®.

Theorem 5-4. If X is a random variable then

(i) )—I( where %)(m)m» if X(w)=20
(i) X+(0) = max [0, X(0)]
(iii)) X-(®)=-min (0, X(®)]
(iv) | x|
arc random variables.

Theorem 5-5. If X; and X2 are random variables then
(i) max [X,, Xz ] and (i) min [X,, X, ] are also random variables.

Theorem 56. If X isa r.v.and f(-) isa continuous function, then
f(X)isar.v.

Theorem 5-7. If X is a rv.and f(.)is an increasing function, then
fX)isarwy.

Corollary. If f is a function of bounded variations on every finite |merval
[a,b],and X isar.v. then f(X)isar.v.

(proofs of the above theorems are beyond the scope of this book)

EXERCISE 5 (a)

1. Let X be a one dimensional random variable. (i) If a< b, show that the
lwo events a < X < b and X < g are disjoint, (ii) Determine_the union of the two
events in part (i), (iii) show that P(a<X< b)=P(X< b)-P(X< a). '

2. Let a sample space S consist of three elements @, , 0, and ;. Let

P(on) = 1/4, P(ay) =1f2and P(w;) = 1/4. If X is a random variable defined on
SbyX ()= 10, X()=~3,X(n)=15findP(-2< X< 2).
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3. LetS=(e, ez ..., €2) be the sample space of some experiment and leg
E c S be some event associated with the experiment.
Define g, the characteristic random variable of E as follows :

1if e: €E
ws(e')_ Oif e; g E.

In other words, yg is equal to 1 if E occurs, and yg isequal to 0 if E does not
occur.
Verify the following properties of characteristic random variables :
(i) Yo is identically zero , i.e., Yo (€)=0; i=1,2,...,n
(ii) s is identically one , i.c., Ys(e&)=1;i=1,2,...,n
(iii) E=F= ye (&)= yr(ei); i=1,2,...,n and conversely
(iv)If EC F then ye(e) < Wr(e:); i=1,2,...,n
) Ve(e)+ \yE(e.) is idenfically 1 : z-l 2, .50
(Vl) \VEnF(e.)- Ve(e)Wr(e); i=h2,.
(vii) Weor (€)= Ve (&) + e (e) - \vs(e.)\vp(e,) for i=1,2,.
5.2. Distribution Function. Let X be ar.v. on ( S,B,P). Then the funcuon:
Fx(x)=P(X<x)=P{@:X(0)< x}, — w<x<oo
is called the distribution function (d.f.) of X.
If clarity permits, we may write F(x) instead of Fx (x). L(51)
5-2-1. Properties of Distribution Function. We now proceed to derive a
nurrber of properties common to all distribution functions.
Property 1. IfF isthe df of ther.v.X and if a < b, then
P(a<X<b)= F(b)- F(a)
Proof. The events ‘a<X< b’ and ‘X< a' are disjcint and their union is the event
‘X< b’. Hence by addition theorem of probability
P(a<X<b)+ P(X<Sa)=P(X2))
= P(a<X<b)= P(X<b)-P(X<a)=F(b)- F(a) ..52
Cor. 1.
P(a<X<b)=P{(X=a)u (d<X<b)}
=P(X=a)+ P(a<X<bh)
(using additive property of P)
=P(X=a)+[F(b)- F(a)] w520
Similarly, we get /
P(a<X<b)=-P(a<X< b)-P(X=b)
=F(b)- F(a)- P(X=b) ..(52b)
P(as X<b)s P(a<X<b)+ P(X=a)
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=F(b)-F(a)-P(X=b)+ P(X=a) ..(52c¢)

Remark. When P (X =a)=0and P(X = b) =0, all foureventsa< X< b.
a<X<b, a< X <banda <X < b have the same probability F(b) - F(a).

Property 2. If Fis the df. of one-dimensional rv. X, then
())OSF(x)<1, (i) F(x)< F(y) if x<}y.

In other words, all distribution functions are monotonically non-decreasing
and lie between O and 1.

Proof. Using the axioms of certainty and non-negativity for the probability
function P, part (i) follows triviality from the definition of F (x).

For part (ii), we have forx < y,

F(y)-F(x)=P(x<X<y)20 (Property 1)
= F (y)2 ¥(x)
= F(x)< F(v)whenx<y ..(53)

Property 3. If F is d.f. of one-dimensional r.v. X, then
F(-0)= Ilim F(x)=0
X——o00

and F(%)= Ilim F(x)=1
X — oo
Proof. Let us express the whole sample space S as a countable union of
disjoint events as follows :
©o ®
S=[u (-n<X<-n+1)Ju [ U (n<X<n+1)]

n=1 n=0

= P(S)= 3, P(-n<X<-n+1)+ 3, ‘P(n<X<ri+1)

n=1 n=0

(. Pisadditive)

= 1=1lim Y [F(-n+1)=F(-n)]
a—e .1

b
+ lim z [F(n+1)=F(n)]

b— oo n=0

lim [F(0)-F(-a)]+ lim [F(b+1)- F(0)]

a— o b oo
=[F(0) F(=e)]+ [F()-F(0)]
F(e)= F(=o) (*)

Since —0 <00, F(—-00)< F (). Also
F(-«)20and F(»)<1 ( Property 2)
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0< F(-»)S F(»)< 1 (**)
(*)and(**)ngeF(—oo)—Oand F(eo)=1. '
Remarks. 1. Discontinuitics of F(x) are at most countable.

2. F(a)- F{a- 0)= lim F(a hsX<a), h>0
h—>0
F(a)- F(a-0)= P(X=a)
and F(a+ 0)-F(a)= lim P(as X<a+ h)=0,h>0
h—>0
= F(a+ 0)= F(a)

5-3. Discrete Random Variable.  If a randori variable takes at most a
countable number of values, itis called a discretc random variable. /n other
“words, a real valued function defined on adiscrete sample space is called a discrete
random variable.
53-1. Probability Mass Function (and probability distribution of a
discrete random variable ). . )
_ Suppose X is a one-dimensional discretc random variable taking at most a
countably infinite number of values x;, x;,... With each possible outcome x; ,
‘weassociate anumberpi= P (X = x;)= p(xi), called the probability of x;. The
numbers p (x;); i=1,2,... must satisfy the following conditions :

(i) p(x)20V i, (i) T p(x)=1
i=1

This function p'is called the probability mass function of the random variable
X and the set {x;, p (x;) ) is called the probability distribution (p.d.) of the r.v. X.

Remarks: 1. The set of values which X takes is called the spectrum of the
random variable,

2. For discrete random- variable, a knowledge of the probability mass
function enables us to compute probabilities of arbitrary events. In fact, if Eisa
set of real numbers, we have

P(Xe E)= X  p(x), whereS is the sample space.

xéENnS
IMlustration. Tossof coin, §= (H,T}. LetX be the random variable
defined by
X(H)=1, ie, X= 1, if ‘Head’ occurs.
X(T)=0, ie., X= 0, if ‘Tail’ occurs.
If the coin is ‘fair’ the probability function is giv¢n by
P((H})=P((T})=}
and we can speak of the probability distribution of the random variable X as
P(X=1)=P((H})=3,

2
P(X=0)=P((T) )=},
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5-3-2. Discrete Distribution Function. In this casc there are a

oo

countable rumber of points  xy, x2, X3, .. and numbers p, > 0, £ p,= | such
1
that F(X)= £  pi. For cxample if x; isjust the integer i, F(x)isa
(i:xsx)

"step function” having jump p; at i, and being constant between each' pair of
integers. Food

X

Theorem5-5. p(x)= P(X=x)= F(x))- F(x.-.), where Fisthedf.
of X.
Proof. Letx, < x2< ... We have
F(x)= P(X<x,)

2 P(X=x)= 2 p(x:)

i=1 i=1

J=1
and F(xji-1))= P(X<xi_)= z p(xi)
. i=1
F(x)- F(xi-1)=p(x) ..(5-5)

Thus given the distribution funétion of discrete random variable, we can
compute its probability mass function. )
Example 5-1. An-experiment consists of three independeni tosses of a fair
coin. Let
X = The number of heads
Y = The number of head runs,
Z = The lenght of head runs,
a head run being defined as consecutive occurrence of at least two heads, its length
then being the number of heads occurring together in three tosses of the coin.
Find the probability function of (i) X, (ii)Y, (iii) Z, (iv) X+Y and (v) XY and
construct probability tables and draw their probability charts.
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Table 1

S.No. . Elementary
event

Random Variables

>
+
~

>
*

HHH
HHT
HTH
HTT
THH
THT
TTH
r

O o= N = NN W

O NN D W -

SO0~ OO = ==
COONO O N WN

O o W) = N W S

QOO NNO OV W

Here sample space is.

S ={HHH, HHT ,HTH, HTT, THH, THT, TTH, TTT}

(i) Obviously X isar.v. which-can take the values 0, 1, 2, and 3
p(3)=PHHH)=(12)’ = 18
p(2)=P[HHT U HTH U THH )

=P (HHT )+ P (HTH)+ P (THH)=1/8 + 1/8+1/8=3/8

Similarly p (1) = 3/8 and p (0) = 1/8.

These probabilities could also be obtained directly from the above table 1.

Table 2
Probability table of X
Valués of X
0 1 2 3
(x)
px) 1/8 3/8 38 118
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Table 3

(ii) Probability Table of Y

Valuesof Y,

(y)

01

p(y)

5/8 3/8

This is obvious from table 1.
(iii) From table 1, we have

Table 4
Probability Table of
Values of Z,
01 2 3
(2)
p(2) 58 0 2/8 1/8

(iv)LetU =X + Y. From table 1, we get 5,9

Table S
Probability Table of U

Values of U,
(u)

01234

p(u)

1/83/81/82/8 1/8

(v)LetV =

XY

Table 6
Probability Table of V

Values of V,
v)

012 3

p(v)

58 028 18

ij
5(8

L8
38t
2(8r
1/8r

LS

4

0

1

>

y

p(z) 4 Probability chart of Y

5/8 4
w8}
38}
2/8
18}

v .

1

e

Probability chart of Z

p(u)

ulg
318
2(8
e

0

59

1T

Probability chart of U = X+Y
p(vh

58
4]
11}
2/8

18r

0

13

-

|

—

3

Probability chart of V = XY

ad |
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Example 5-2. A ‘random variable X has the following probability
distribution :
x: 0 1 2 3 4 S -6 7
px: O k 2k 2k 3k k2 2k Tk +k
(i) Find k, (ii) Evaluate P (X < 6), P (X2 6), and P (0< X < 5), (iii) If
P(X<c¢)> 15, find the minimum value of c, and (iv) Determine the distribution

Sfunction of X. [Madurai Univ. B.Sc., Oct. 1988)
7

Solution. Since Zo p (x) = 1, we have
s

= k+2k+2k+3k+k2+ 22+ T2+ k=1

= 10k2+9% -1=0
= (0k-1Dk+1)=0 =k=1/10
[-.- £=-1, is rejected, since probability canot be negative.]

((HP(X<6)=P(X=0)+P(X=1)+..+P(X=5)
1 2.2 3 1 _ 8l

10 10" 70 100~ 100
19
P(X26)=1-P(X<6)=1c

PO<X<5)=PX=D)+PX=2)+P(X=3)+P(X=4)=8k=4/5
(iii)P(XSc)>]E. By trial, we get ¢ = 4.

(iv) X Fy(x)=P(X<x)
0 0
1 k =110
2 3k =3/10
3 Sk =510
4 8k =4/5
5 8k + k2 =81/100
6 8k + 3k =83/100
7 9% + 10k2 =1
EXERCISE 5 (b)

1. (@) A student is to match three historical events (Mahatma Gandhi’s
Birthday, India’s freedom, and First World War) with three years-(1947, 1914,
1896). If he guesses with no knowledge of the correct answers, what is the
probability distribution of the number of answers he gets correctly ?

(b) From a lot of 10 items containing 3 defectives, a sample of 4 items is
drawn at random. Let the random variable X denote the number of defective items
in the sample. Answer the following when the sample is drawn without
replacement.
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(i) Find the probability distribution of X,

(ii) Find P (X< 1),P (X<1)and P (0<X <2)
Ans. (a) x| 0 1 2.3

11 1
p(x) ) 0 3
G @ x | 01 23 (ii) 2/3,5/6, 112
T 13 1
P®) | 6 270 30

2. (a) A random variable X can take all non-negative integral values, and the
probability that X takes the value r is proportional t0 o (0< o< 1). Find
P(X= ’0 ). [Calcutta Univ. B.Sc. 1987]

Ans. P(X=r=Ad ; r=0,1,2,...;A=1-0;P(X=0)=A=1-«

(b) Supposc that the random variable X has possible values 1, 2, 3, ... and
P(X=j)= Ly ,j=1,2,... (i) Compute P (X is even ), (ii) Cgmpute
P (X2 5),and (iii) Compute P (X is divisible by 3).

Ans. (i) 1/3, (i) 1/16, and (i) 1/7

3. (a) Let X be a random variable such that

P(X=-2)=P(X=-1),P(X=2)=P(X=1) and
P(X>0)=P(X<0)=P(X=0).
Obitain the probability mass function of X and its distribution function.

Ans. X 2 10 : 2
o 11 111
p 6 6 3 6 6
1 2 4 5
2 £ s 2 1
Fx 6 6 6 6

{b) A.random variable X assumes the values -3, -2, -1, 0, 1, 2, 3 such that
P(X=-3)=P(X=-2)=P(X=-1),
P(X=1)=P(X=2)=P(X=3),
and P(X=0)=P(X>0)=P(X<0),
Obtain the probability mass function of X and its distribution function, and find

further the probability mass function of Y = 2X 243X+ 4.
[Poona Univ. B:Sc., March 1991)

Ans. X 3 22 - 0 1 2 3
w L 1 1 1 1 1 1

p(x 9 9 9 3 9 9 9

Y 3 6 3 4 9 18 31

w L 1 1 1 1 1 1

P, 9 9 9 3 9 9 9
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4. (a) A random variable X has the following probability function :

Valuesof X,x : ~2 -1 0 1 2 3
p(x) : 0-1 k 02 2k 03 k
(i) Find the value of k, and calculate mean and variance.
(ii) Construct the c.d.f. F(X) and draw its graph.

Ans. (i) 0-1,0-8 and 216, (ii) F (X ) = 0-1,0-2,04,0-6,09, 1-0
(b) Given the probability function
x | 0 1 2 3
p(x) | 01 03 05 01
LetY= X 2+ 2X, then find (i) the probability function of ¥, (ii) mean and
variance of Y.
Ans. (i) yl 0 3 8 15
POy | 01 03 05 01
5. A random variable X has the following probability distribution :
Valuessof X, x [0 1 2 3 4 S 6 7 8
p(x) ! a 3a 5a 7a 9a lla 13a 15a 17a
(i) Determine the value of a.
(i) Find P (X< 3),P(X23),P(0< X< 5).
(iii) What is the smallest value of x for whichP (X< x)> 0-5? and
(iv) Find out the distribution function of X ?
Ans. (i)a=1/81, (ii)9/81, 72/81,24/81, (iii)6
(ivyx | 0 1 2 3 4 5 6 7 8
Fx) | @ 4a 9a 162 25a 36a 49a 64a 8la
6. (a) Let p(x) be the probability function of a discrete random
variable X which assumes the valles x, , x>, x5, x¢, such that 2 p (x;)=3 p (x2)
=p (1)=5 p (x). Find probability distribution and cumulative probability dis-
tribution of X. (Sardar Patel Univ. B.Sc. 1987)
X X1 X2 X3 X4
p(x) (%6 |16 | 306 | H6
(b) The following is the distribution function of a discrete random
variable X :
x -3 - 0 1 2 3 5 8
fx) 010 030 045 0S5 075 090 095 1.00
(i) Find the probability distribution of X.
(ii) FindP(X is even) and P(1< X< 8).
(iii) FindP(X=-3|X<0) and P(X2 3| X> 0).
[ Ans. (i) 0-30, 0-55, (iii) 173, 5/11].

, (i) 64,1624

Ans,
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7.1 p(x)= 75ix= 1,2,3,4,5
= 0, elsewhere
Find({) P(X=1o0r2}, and(u)P{ < X< -| X> 1}
[Allahahad Univ. B.Sc., April 1992]

Hint. ()P{X=10r2}=P(X=1)+P(X= 2)——+%—%
P{[E<X <E]r\ X> l}
(u)P{ <X<= |X>l} P (X5 1)
P{(X=10r2)nX>1 pP(X=2) %5 1
PX>1) T1-P(X=1) 1-(Ws) 17

8. The probability mass function of a random variable X is zero
except at the points x= 0,1,2. At these points it has the values p (0) = 3¢°,
p(1)=4c-10c* andp (2)=5c-1 for some ¢ > 0. &

(i) Determine the value of c. .
(ii) Compute the following probabilities, P (X <2) and P (1 <X <2).
(iii) Describe the distribution function and draw its graph.
(iv) Find the largest x such that F (x) < V2.

(v) Find the smallest x such thatF (x)= V3. [Poona Univ. B.Sc., 1987)

Ans. (l) 3 (u)%‘.%. (iv)1,(v) 1.

9. (a) Suppose that the random variable X assumes three values 0,1 and 2
with probabilitics 3, 1 and 1 respectively. Obtain the distribution function of
X. [Gujarat Univ. B.Sc., 1992]

(b) Given that f(x)=k(1/2)* is a probability distribution for a random
variable which can take on the valuesx =0, 1, 2, 3,4, 5, 6, find k and find an
expression for the corresponding cumulative probabilities F (x).

(Nagpur Univ. B.Sc., 1987)

5-4. Continuous Random Variable. A random variable X  is said to be
continuous if it can take all possible values between certain limits. /n other words,
a random variable is said to be continuous when its different values cannot be put
in 1-1 correspondence with a set of positive integers.

A continuous random variable is arandom variable that (at least concep-
tually ) can be measured to any desired degree of accuracy. Examples of continuous
random variables are age, height, weight etc.

5:4-1. Probability Density Function (Concept and Definition ). Consider the
small interval (x, x + dx) of length dx round the pointx. Letf (x) be any continuous
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function of x so that f(x) dx represents the probability that X falls in the in-
finitesimal interval (x, x + dx). Symbolically

P(x<X<x+dx)=fx(x)dx . (55)

In the figure,f ( x ) dx represents

the area bounded by the curve

y=f(x), x-axis and the ordinates at

the points x and x + dx . The func-

tion fx (x) so defined is known as

- f(x).dx P\
2

probability density function or simply R
density function of random variable x-0X x+dX -
X and is usually abbreviated as 2 2

p.df. The expression, f (x) dx , usually written as dF (x), is known as the prob-
ability differential and the curve y= f(x) is known as the probability density
curve or simply probability curve.
Definition. p.d.f.fx (x) of the r.y. X is defined as :
0= lim P(x< X8S x+ Ox)
Sx— 0 x

. The probability for a variate value to lie in the interval dx is f(x) dx and hence
the probability for a variate value to fall in the finite interval o, B] is :

.(55a)

P(a<X<P)= Ig f®@) dx . (5:5b)

which represents the area between the curve y = f (x), x-axis and the ordinates at
x=aandx=p. Further since total probability is unity, we have IZ f@dr=1,

where [ a, b ] is the range of the random variable X . The range of the variable may
be finite or infinite.

The probability density function ( p.d.f.) of a random variable (r.v.) X
usually denoted by fx (x) or simply by f(x) has the following obvious propertics

(i) fX)2 0, —c0o< x< 00 ..(55¢)
i) [ fode=1 . (554d)
(iii) The probability P (E) given by
P(Ey= [ f(x)dx (55¢)
E

is well defined for any event E.

Important Remark. In case of discrete random variable, the probability ata
point, i.e., P (x= c)is not zero for some fixed c. However, in case of continuous
random variables the probability at a point is always zero, i.e.,P (x= ¢)= 0 for
all possible values of ¢. This follows directly from (5-5 b) by taking a= B= c.
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This dlso agrees with our discussion earfier that P (E )= 0 does not imply that
the event E is null or impossible cvent. This property of continuous r.v., viz.,

P(X=¢)=0, V¢ (550
leads us to the following important result :
P@a<X<P)=P@sX<PB)=P@@<X<PB)=P(@<X<P) ..(559
i.e., in case of continuous r.v., it does matter whether we include |he end points of
the interval from a to B.

However, this result is in general not true for discrete random variables.

5-4-2. Various Measures of Central Tendency, Dispersion, Skewness, and
Kurtosis for Continuous Probability Distribution. The formulae for these
measures in case of discrete frequency distribution can be easily extended to the
case of continuous probability distribution by simply replacing p;= fi/N by
f (x) dx, x; by x and the summation over ‘i’ by intcgration over the specified range
of the variable X.

Let fx (x) or f(x) be the p.df. of a random variable X where X is defined
from a to b. Then

(i) Arilhmel.ic mean = Iz x f{x)dx (56)

(ii) Harmonic mean. Harmonic mean H is given by

b
I [ ]f( & (56 a)

(iii) Geometric mean. Geomemc mean G is given by
log G = ]z log x f (x) dx

(56 b)
(iv) W’ (about origin) =]Z ¥ fx)dx 57
1’ (about the point x= A) =]z (x~ AY f(x)dx 574
and |, (about mean) = IZ (x — mean) \f(x)dx (57 b)
In particular, from (5-7), we have
M1’ (about origin) = Mean= IZ x f(x) dx
and w'=[0 2y ax
s a_ (b b 7
Hence Ha= M2 — —] X fiq) dx - I xf@def .. (579

From (5 7), on putting r=3 and 4’ respectively, we get the values of
My and (L ’ and consequently the moments about mean can be obtained by using
the relations :
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u3 = p-3’ _ 3“-2’ u)' + 2“1'3 .
and TP TR TR TRETY  TRATRGE They } - G714
and hence B; and B, can be computed.
(v) Median. Median is the point which divides the entire distribution in two
equal parts. In case of continuous distribution, median is the point which divides
the total area into two equal parts. Thu< if M is the median, then

M b 1

[lreoa= [} rwan=} 69
Thus solving

Mrowm=t o [hroa=t - (584)

for M, we get the value of medlan.
(vi) Mean Deviation. Mean deviation about the mean |, is given by

MD.= JZ | x— mean| f(x)dx
(vii) Quartiles and Deciles. Q: and Qs are given by the equations
1 3
j‘%‘ f@dx=1 and j‘%’ fRdx=3

- (59)

«. (5:10)
D;, ithdecile is given by

JD' fyde= 5 = ..(510a)

(viii) Mode. Mode is the valuc of x for which f (x) is maximum. Mode is thus
the solution of
f/x)=0and f"(x)< 0 . (5:11)
provided it lies in [a,b].
Example 5:3. The diameter of an electric cable, say X, is assumed to be a
continuous random variable with pdf. f(x)=6x(1-x),0< x< 1.
(i) Check that above is p.d.f.,
(ii) Determine a number b such that P (X <by=P (X>b)
{Aligarh Univ. B.Sc.{(Hons).1990]
Solution. Obviously, for0< x< 1, f(x)2 0

Now j(l)f(x)dx=6_[l x (1~ x)de

= 6_[] (x—

Hence f(x) isthe pdf. of r.v. X .
(ii) PX<by=P{X>b) w(*)
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= o rdr=]} £ ax

= 6jgx(l—x)dx=6jll’x(l—x)dx

- ﬁ_z’_t‘ﬁ_x_’l
2 3o [2 3|

- ESHEEE)
2 3 2°3 23

= 362-2b"=[1-3b*+2b%)

= 4’ -6b+1=0

Qb-1)(2b* -2-1)=0
= 26-1=0 or 26*-2b-1=0

Hence b = 1/2 is the only real value lying between 0 and 1 and salisfying (*).
Example 5-4. A continuous random variable X hasa p.df.
f(x)=32,0<.x< 1. Findaandb such that
(i)P{X<a)=P{X>a), and
(i) P{X>b)=005. [Calicut Univ. B.Sc., Sept. 1988]
Solution. (i) SinceP(X< a)=P(X> a),
each must be equal to 1/2,because total probability is always one.

1 a -1
PXsa=y = [§iwar=3
a2, _1 2la_1
= 3JOX =5 = 3 31,2
JRLER N e |
= =3 =2
(ii) PX>H=005 = [ f()de=005
I3 1 i - 3 1
@ 317,720 = 1702
s 19 _(19y:
= b—20 b—(zo]s.

Example 5-5. LetX be a continuous.random variate with p.d f.
f(x)=ax, 05 x< 1
=a, 1<x<£2
=~ ax+ 3a, 2<x<3
= 0, elsewhere
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(i) Determine the constant a.
(ii) Compute P (X £ 1-5). [Sardar Patel Univ. B.Sc., Nov.1988]
Solution. (i) Constant ‘a’ is determinéd from the consideration that total
probability is unity, i.e.,

= foax=1
= |2 roaee [y ae Prog s Provace [ foyae=1

= [yarac+ ﬁa.dx+ P assaa=1

le 2 x* 3
= al|l= X +a -=+3x| =1
2 2
2 249 2+ 6) |=1
= 2+a+a 2+ -(-2+6)|=
) L8 1
= 5—1 = =1 = a=j

i) Px<19)=['2 fwac=[2 royac+ [} rwac+ [V rwyax
a_[(l) xdx+_[li5 a.dx

2 1+a| ||-5=
2 0o

+05a

[STEN

=a=% [-.-a—— Part (i)

Example 5-6. A probability curve y= f(x) has a range from 0 to « , If
fQx)= € ", find the mean and variance and the third moment about mean.
[Andhra Univ. B.Sc. 1988; Delhi Univ. B.Sc. Sept. 1987]
Solution.

u, (rth moment.about origin ) = _[0°° x'f(x)dx

=_[(;° x'e*dx=T(@+1=r!

(Using Gamma Integral)
Substituting r = 1, 2 and 3 successively, we get
Mean=u'=11=1, w'=21=2, i’=31=6
Hence variance = pp= W' - w2=2-1=1
and W3 = },13'—3|,l2' i.11'+2|,l1'3= 6-3x2+2=2
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Example 5-7. In a continuous distribution whose relative frequency density
is given by

f@)=yo.x(2-x),0<x<2,

find mean, variance, B. , and B: and hence show that the distribution is symmetri-

cal. Also (i) find mean deviation about mean and (ii) show that for this distribution
Hane1 =0, (iii) find the mode, harmonic mean and median.

[Delhi Univ. B.Sc.(Stat. Hons.), 1992; B.Sc., Oct. 1992]
Solution. Since total probability is unity, we have

J%f(x)dx=l
YoI(Z)X(Z—x)dx= 1 = yo=Y%

f0)=3x(2- x)

’ ’ 3 re '2”1
u,=J3xf(x)dx=ZJ3x "(2-x)dx= 3

(r+2)(r+3)
In particular

2 "3
Mcan = u|'=£= 1 =3 %

455"
328 g w3216
H=56" 5 =671~
Hencé varience= o= Wy’ — ' 2= %—1:%
TR T TR T 2u,"=—§-—3 % 1+2=0
o= W= A+ 6 - 3 t= 22 g 1+6.%.1—3.1=%

2 T ()
Since By = 0, the distributior is symmetrical.
Mean deviation about mean

8

7 5

: s 15

e B o0 and e 3515

=J§ | x=11 fx)ax

j(l, |x-1|f(x)ebr+ﬁ [x-1] foxydx

= %[ (l) (1-x)x(2-x)dx+ J? (x- l)xf”.—x)dx]
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=3[[s @x-3¢ +x’)dx+I2(3x2 -2 ds |
=%[ 0+.3.x§__§_2x72 1]=i§3

Mzae1 = ‘I(Z) (x— mean )’"+l f(x)dx

= % I(z) x-D"'x2-x)dx

=3
“3)1

3 Il mel

(2 e+ DA -ar (x-1=1)

Y

Since l2"+l lisan odd function of ¢ and (1~ ?) is an even function of ¢,
the integrand ¢ **' (1 - ¢ 2) is an odd function of ¢ .
Hence Maa+1=0.

Now f'(x)=%(2—2x)=0 = x=1

”, _ 2 __é :
and ffm=362=-5<0
Hence mode = 1
Harmonic mean H is given by

1 1
il zrwa

3 3
=3l e-na=3
= H=§
If M is the median, then
M
Jo, f@ax=3
3
= 21 x@-nax=1 <
3 M
2 _ X |M_ 2
= x"= 300=3
= IM- M*=2
= MP-3M*+2=0
= M-1)M*-2M-2)=0
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The only value of M lyingin [ 0,2 ]is M = 1. Hence median is 1.
Aliter. Since we have proved that distribution is symmetrical,
Mode = Median = Mean = 1

Example 58. The elementary probability law of a continuviis random

variable X is
f@)= e’ 9, asx<oo, b>0
where a, b and y, are constants.

Show that y,= b= Voand a= m— o, where m and G are respectively the
mean and standard deviation of the distribution. Show also that B,= 4 and
B.= 9. (Gaubati Univ. B.Sc.,.1992]

Solution. Since total probability is unity,

[Zrma=1 = y[reteom=n
et loo
-b |a
= Yo=b

u,” ( rth moment about the point ‘x= a’)

= yo = l = yo 1 (b>0)

= I°° (x—a)’ f(x)dl'= bj: (X—a)-' e-b(x-a)dx

—bI e [Onputtingx- a=t]

=*p l‘(r-rl)= r_

S [ Using Gamma Integral ]

In particular
W= 1/b, W= 2/b% pyf = 6/b°, W' = 24/b*
m= Mean =a+ W' =a+ (1/b)

and o= W= W - W= 16’

Hence y,=b=
Also Ha= M’ ~ 3 s '+ 2u."= e 5 (6~ 32+2)=—_2o"

and = W' - 4ps '+ 6p w2 - 3wt
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=-t%(24—4.6.1+6.2.1-3)=;b);= 96"

Hence PBi= pi/ps = 46°/6°= 4 and o= p/pi= 96%6*=9
Example 5:9. For the following probability distribution
dF = y..e"" dx, —oo<x<oo

show that y, = % ,m'=0, 0= N2 and mean deviation about mean = 1.
Solution. We have J‘_°°°° f)dx=1

=5 ]2, eMa=1 s 2 [0 =,

(since ¢ '*' is an even function of x)
©c . .
= 2y.JO e dx=1, (sincein0< x< oo, | x| =1x)

-X

-1

* 1
=1 = 2=1, ie, Yo= 3

= 2y

K’ (about origin ) = J_°°°° x f(x)dx= % j

=0,
( since the integrand x . e

©0

x e ax

'*! is an odd function of x )

Wy = I_: 2 f(x)dx= %]_"; e dx

_ 1[0 2 il
=32 e a

[since the integrand x> ¢™'*' is an even function of x ]
Mo’ = I: e dx=T(3) (onusing Gamma Integral)
= w=21=2

Now o= Jp= P - w'i=2
M.D.aboutmean = I:om | x—mean | f(x)dx
=%Ij°“ lx| &' ax (- Mean= p’= 0)-
1

o ~ x|
=§.2I0 Ixl e dx

= I(;o xe*dx=T1(2)=1
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Example 5:-10. A random variable X has the probability law :
dFey= % .7 dx, 0<x<o
Find the distance between the quartiles and show that the ratio of this distance to
the standard devation of X is independent of the patameter ‘b’.

Solution.  If Q, and Qs are the first and third quartiles respectively, we
have

J@rma=t = L@ s a=d
Put y=.—"2£; then dy=§dx

JOQI /2" - dy=% - _e‘l’ g,’/%: i
= 1- g2 % = g %
= = V25 Vlog (4/3)

Again we have IQ’ f()dx= §- which, on proceeding similarly, will give

- @234 = #8721
= 0s=V2b Vlog(4)
The distance between the quartiles is given by
0:—-0i= V2 [Vlog 4 - Viog (4/3) ]

= 7 xfd= [ x ?e"”zdx
- j'(;” Y26y €7 dy [y="—2]
=V [ & PP
—\l2bl‘(2] v2.b. 2'{2) NPTRL =bm
we= [ 2 rwa= [ 2 5 e dx
T 2]
= 20" I(2)= 2b*.1!=2b
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0’2= K2 = l,l.z’— I.l1’2= 2b2— b2.£= b’[2-£]

2 2
= 6= b N2-@/2)
0:- 0 V2[Vlogd - Viog(4/3)]
Hence s - N2-(n/2) '

which is independent of the parameter ‘b’.
Example 5-11.  Prove that the geometric mean G of the distribution
dF=6Q2-x)(x~1)dx, 1Sx<2
is given by 6 log (16G) = 19. [Kanpur Univ.B.Sc.,Oct. 1992]
Solution. By definition, we have

logG= ﬁ logx f(x)dx= 6ﬁ logx 2-x)(x-1)dx
=—6ﬁ (2 - 3x+2) log x dx

Integrating by parts, we get

. 2
logG=—6[ ‘ [{— 37“24-.2.7c)logx 1

3 3
P (2-En)l

=-4log2+6x % (on simplification)

logG+4log2=-169- = logG+log2‘=%9

=  logG+log 16=—'62 = log(l6G)=%

= 6log (16G)=19
Example 5:-12. The time one has to wait for a bus at a downtown bus stop
is observed 10 be random phenomenon (X) with the following probability density
function ;
(=0, for x< 0

=1(x+1), for 0<szx<1

=2(x-1), for 1<x<?
=2(3-x), for 3sx<2
=4(4-x), for 25 x<3

1 for 35 x<6
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=0, fO" 6<x,

Let the events A and B be defined as follows :
A : One waits between 0 to 2 minutes inclusive:
B : One waits between 0 to 3 minutes inclusive.
(i) Draw the graph of probability density function.

(ii) Show that (@) P(B|A)=2, () P(Z n B)=

)

‘ 3
Solation. (i) The graph of p.d.f. is given below.
£(x)
oot
39t
29t
119
o 1 2 3 6 x
, I1 ¥4l 1
W@ PW=[2rwa= 5 a+ndes [, a[x—-z-]dx \
. 2 4(5
e [n3(3-x)e
=% ( on simplification )
P(ANB)= P(lsxs2)=ff,f(x)dx
(¥4 _1 4(3 _
‘Il 9[" 2}’”13/;9(2 "}t‘
_1[x_’_ 5]’&1[2 _ﬁEQ_l
Fol27 2 Tol2*T 2k, \
( on simplification )

. _P(AnB)_1/3 2
- P(BIA)= P(A) 17273

(b) A~ B means that waiting time is more than 3 minutes.
“PAAD=P(X>3)=[ fo de=[] po at [ o ax

15 e 1els-d
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Example 5:-13. The amount of bread (in hundreds of pounds) X that u certain
bakery is able 1o sell in a day is found to be a numerical valued random
phenomenon, with a probability function specified by the probability density

Sfunctionf(x), given by

fx)=A.x, for 0< x< §
=A(10-x), for 5 x< 10
= 0, otherwise

(a) Find the value of A such that f(x) is a probability density function.
(b) What is the probability that the number of pounds of bread that will be sold
tomorrow is
(i) more than 500 pounds,
(ii) less than 500 pounds,
(iii) between 250 and 750 pounds? (Agra Univ. B.Sc., 1989]
(c) Denoting by A, B, C the events that the pounds of bread sold are as in b
(i), b (ii) and b (iii) respectively, find P (A|B),P(A|C). Are (i) A and B
independent events? (ii) Are A and C independent events ?
Solution. (a) In order that f (x) should be a probability density funcuon

[Z roae=1
. 5 10 o
ie., [ Axdcs IS A(10-x)dx=1
= A= -élg (On simplification)

(b) (i) The probability that the number of pounds of bread that will be sold
tomorrow is more than 500 pounds, i.e.,

P(5<x<10)= [10L (10-x ydx= o | 10:- 10
sXs 5 25 5
1 {25) 1
“2—5[2] 2= 05

(ii) The probability that the number of pounds of bread that will be sold
tomorrow is less than 500 pounds, i.e.,

5.1 =L
0 25 *%= 725
(iii) The required probability is given by

1

P(255X<19)= [0 so v an+ [0 o L o- x)dx—%

(c) Theevents A, B and C are given by
A:5<X<10; B:0<X<S5; C:25<X< 175§

2|5
210

0-5

P(0sX<5)= %
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Then from pans b (i), (ii) and (iii), we have
P@#)= 05, P(B)= 05, P(O)=2

The events AN B and A N C are given by
AnB=¢ and ANnC : 5< X< 75
P(AnB)=P(p)=0
ad  PANC)= J’S"5 F) dx= % I;’S (10— x) dx

_1.75_3

=257 83
P(A).P(C)= :‘x%=%

PANC)
= A and C are independent.
Again P (A).P (B)= i— #P(ANnB)

= A and B are not independent.

P(A|B)=%‘ﬂ=o
PlC- PANO 38 1

P (C) 3/4 2

Example 5-14. The mileage C in thousands of miles which car owners get
witha certain kind of tyre isa random variable having probability density function

f(x)= — e¥®, for x>0

= 0 , for x<0
Find the probabilities that one of these tyres will-last
(i) at most 10,000 miles,
(ii) anywhere from 16,000 to 24,000 miles. 2
(iii) at least 30,000 miles. (Bombay Univ. B.Sc. 1989)

Solution. Letr.v. X denote the mileage (in 000 miles) with a certain kind
of tyre. Then required probability is given by:

(i) P(X<10)= PO FR) dx= 2'0 (1)0 VP dx
_ 1 e-:/n IO _ 12
T 20 |-1/20 [

1 - 06065 = 0-3935
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" 1 24 X ~ v |24
<X<L = — —_— = -

(ii) P(16<X<24) 20 J16 XP [ 20]dx | e 6

~ 16/ -24/20 ~4/5 - 6/5
=P ¢ =e-¢

0-4493 - 0-3012 = 0-1481
1 ~ 2/20

see — 0 = <~ e
(iii) P(X230)= .[30 f®dx= 55 | 7130

= ¢ %= 02231

(-]

30

EXERCISE 5 (¢)
1. (a) A continuous random variable X follows the probability law
f)= Ax*, 0<x<1

Determine A and find the probability that (i) X lies between 0-2 and 0-5,
i) X is less than 0-3, (iii) 1/4 <X <1/2ana @uv) X >3/4 given X >1/2.

Ans. A=03,(i)0-117, (ii) 0027, (iii) 15/256 and (iv) 27/56.

(b) If a random variable X has the density function

_ 74, -2<x<2
fo= { 0, elsewhere. }
Obuain (i) P(X<1), (ii)P (| X |>1) (i) P(2X +3>5)
(Kerala Univ. B.Sc., Sept.1992)

Hint. (i) P(X1>1=P&>1 or X<= ="} f@ae+ 21 ax

or PUxl>n=1-P(XI<)=1-P(-15X<1)
Ans. (i) 3/4, (i) 112 (iii) 1/4.
2. Arc any of the following probability mass or density functions?
Prove your answer in each case.
1 3 11
@ J@=x: 5=76 1643
(b) f(X)=Ae™; x20; A>0
2%, 0<x<1
(c) f(x=14-2, 1<x<?2
0, elsewhere,
(Calicut Univ. B. Sc., Oct. 1988)
Ans. (a) and (b) are pm.f./p.d.f’s, (c)is not.
3. Iffi andf; arep.d.f.’s and 8, + 6;= 1, check if.

g)=6fix)+ 6;/2(x), isapdf
Ans. g(x) is a pdf. if 0£(6,,6)<1 2= 6, + 6;,= 1.
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4. A continuous random variable X has the probability density function :
f(x)=A+Bx, 0<x<1.
If the mean of the distribution is 7, findA and 8.

Hint: Solve j(') f(®dc=1 and ](') x f(@)dx = 1 FindA and3B.

5. For the following density function
. f=cX(1-x), 0<x<1,
find (i) the constant ¢, and (ii) mean.
[Calicut Univ. B.Sc.(subs.), 1991]
Ans. (i)c=12; (ii)mean=3/5.
6. A continuous distribution of a variable X in the range (-3, 3) is defined by
f@=L 3+x*, -3<x<-1
L(6-2), -1<x<1
=L (3-2%, 1<x<3
(i) Verify that the area under the curve is unity.

(ii) Find the mean and variance of the above distribution.
(Madras Univ. B.Sc., Oct. 1992; Gujarat Univ. B.Sc., Oct. 1986)

Hint: ]_33 ) dc= I_"; fodes [ S de+ 113 F@) dx
Ans. Mean=0, Variance=1
7. If the random variable X has the p.d.f.,

f=1@+1), -l<x<1

= 0, elsewhere,

find the coefficient of skewness and kurtosis.
8.(a) A random variable X has the probability density function given by

f@=6(-x), 0sx<1
Find the mean it , mode and S.D. 6, Compute P (1 — 26 < X < L + 20).
Find also the mean deviation about the median.

(Lucknow Univ. B.Sc., 1988)

(b) For the cominuou;; distribution
dF = y,(x-xX*)dx ; 0<x<1, y, beinga constant.
Find (i) arithmetic mean, (ii) harmonic mean, (iii) Median, (iv) Mode and (v) rth
moment about mean. Hence find 1 and B and show :that the distribution is
symmetrical. (Delhi Univ. B.Sc., 1992 ; Karnatak Univ. B.Sc.,'1991)

Ans. Mean = Median = Mode =

1
2
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(c) Find the mean, mode and median for the distribution,
dF (x)= sin xdx, 0<x<n/2
Ans. 1, /2, =n/3

9. If the function f(x ) is defined by
f)=ce*, 0<x<oeo, >0
(i) Find the value of constant ¢ .
(ii) Evaluate the first four moments about mean.
[Gauhati Univ. B.Sc. 1987]
Ans. () c=a, (i) 0, 1/70%, 2/&*, v/0’.
10. {a) Show that for the exponential distribution
dP=y,.€ ¥ dx, 0<x<e, 6>0
the mean and S.D. are both equal to ¢ and that the interquartile range is
o loge 3. Also find p,” and show thatB, = 4, B.= 9.
[Agra Uiniv. B.Sc., 1986 ; Madras Univ. B.Sc., 1987]

(b) Define the harmonic mean (H.M.) of variable X as the reciprocal of the
expected value of 17X, show that the H.M. of variable whic¢h ranges from 0 o

oo with probability density é 2 et is3,

11. (a) Find the mean, variance and the co-cfficicnts B, , B, of the distribu-
tion,
dF =k x* ¢ *dx, O<x<oo.
Ans. k=1/2;3,3, 4/3 and 5.
(b) Calculate B, for the distribution,
dF =k x ¢ "dx, 0<x<oo
Ans, 2 [Delhi Univ. B.Sc. (Hons. Subs.), 1988]
12. A continuous random variable X has a p.d.f. given by
f=kxe "', x20, A>0
= 0, otherwise
Determine the constant £ , obtain the mean and variance of X .
[Nagpur Univ. B.Sc. 1990]
I3. For the probability density function,
2(b+ x)

f(x)= b(a+t b)’ - b<sx<0
_ 2(a~-x) <
T a(a+b)’ 0<xsa
Find mcan, median and variance. [Calcutta Univ. B.Sc. 1984}

Ans. Mcan=(a-b)/3, Variance=(a*+ b*+ ab)/18,
Median = a - YV a(a+ b) /2
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(ii) Show that, if terms of order ( 4 ~ b )*/a* are neglected, then
mean ~ median = (mean — mode) / 4
14. A variablc X can assume values only between 0 and S and the equation
of its frequency curve is
y= A sin % fx,0<x<5

where A is a constant such that the area under the curve is unity. Determine the
value of A and obtain the median and quartiles of the distribution.

Show also that the variance of the distribution is 50{ % ~ ;l,- } .

Ans. 1/10; 2.5, 4/3,10/3

15. A continuous variable X is distributed over the interval (0, 1] with p.d.f.
ax*+ bx, wherea, b are constants. If the arithmetic mean 6f X is 0-5, find the
values of @ and b.

Ans. -6,6

16. A man leaves his house at the same time every moming and the time
taken to journey to work has the following probability density function : less than
30 minutes, zero, between 30 minutes and 60 minutes, uniform with density & ;
between 60 minutes and 70 minutes, uniform with density 2k ; and more than 70
minutes, zero. What is the probability that on one particular day he arrives at work
later than on the previous day but not more than 5 minutes later.

17. The density function of sheer strength of spot welds is given by

f(x)= 27160000 for 0< x< 400
= (800- x) /160,000 for 400< x< 800
Find the number @ such that
Prob. (X < a) =0-50 and the number b such that
Prob. (X < b) =090. Find the mean, median and variance of X. .
[Dethi Univ. B.E., 1987]

18. A batch of small calibre ammunition is accepted as satisfactory if none
of a sample of five shot falls more than 2 fect from the centre of the target at a
given range. If X, thé distance from the centre of the target to a given impact
point, actually has the density

2
f(x)=k.2xe *, 0<x<3
where & is a number which makes if probability density function, what is the value
of k and what is the probability that the batch will be accepted? &
[Nagpur Univ. B.E., 1987)

Hint, IO3 fOd=1 = k=1/(1-€°)
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Reqd. Prob. = P [ Each of a sample of 5 shots falls within a distance of 2 ft,
from the centre ]

_ o4
= [P(0<X<2))’= [ Igf(‘)“T= [i-i’])

19. A random variable X has the p.d.f.:

_ ] 2, 0<x<1
f(x)-{ 0, otherwise

. . 1 .. 1 1] ... 3 1
Find (1)P[X< 5), (ii) P(2< X< 5), (m)P[X> 3 I X> 5], and

. 3 1
(iv) P [X <3 I X> '2‘)~ (Gorakhpur Univ. B.Sc., 1988)

3 /
Ans. () 1/4, (i)3)16, (iii)—g-———:;(§2 ;‘;;= 2L, (iv)P(PVf;f;z:;/”

5-4-3. Continuous Distribution Function. If X is a continuous random
variable with the p.d.f. f(x), then the function

Fx(®=P(Xsx)= [*_fOydi, ~o<x<oo. (512)

is called the distribution function (d:f.) or sometimes the cumulative distribution
Sfunction (c.d.f.) of the random variable X.

Remarks 1. 0S F(x)< 1, — o< x< o, o

2. From analysis -(Ricniann integral), we know that

F' )= i— F®)=f(x)20 [ f@x) is pdf.]
= F (x) is non-decreasing function of x .
3. F(-e)=lm F(x)=lim [*_fx)de= |7 f(xrax=0
X -0 X —— o

and  F@ro)=lim F(x)=lim [* f(x)de= [ fx)de=1

X =0 X — oo

4. F(x) isa continuous function of x on the right.
§. The discontinuities of F ( x) are at the most countable.
6. It may be noted that

Plaskst)= [P fwac= [0 fea- [*_ foax

=P(X<b)-P(X<a)=F(®)- F(a)
Similarly

P(a<X<b)=P(a< X< b)=P(as X< b)=]P fena
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7. Since F'(x)= f(x), wchave
L F=f(x) = dRx)=f(x)dx
This is known as probability differential of X.

Remarks. 1. It may be pointed out that the properties (2), (3) and (4) above
uniquely characterise the distribution functions. This means that any function F(x)
satisfying (2) to (4) is the distribution function of some random variable, arid any
function F(x) violating any onc or more of these three properties cannot be the
distribution function of any random variable.

2. Often, onc can -obtain a p.d.f. from a distribution function F (x) by
differentiating F (x) , provided the derivative exists. For example, consider

0, forx <0
Fx(x)=1x, for 0< x<
1, for x> 1

The graph of F (x) is given by bold Imes Obviously we see lhat F(x) is
continuous from right as stipulated in (4) and we also see that F (x) is_not
continuous at x= 0 and x= 1 and hence is notderivable aix= 0 andx= 1.

Différentiating F(x) w.r.t. x, we get

d _{]0<x<]

dx Fx)= 0, otherwise

[Note the strict .inequality in 0 < x< 1, since F (x) is not derivable at
x=0andx= 1]
Let us define

_J1,0<x<1
f(x)-{O,otherwise s

Then f(x) isap.d.f.forF.
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Example 5-15.  Verify that thé following is a distribution function:

(l),x x< - a
F(x)= —[—|+ l]‘ -—a<x<fa
2 a
x> a

1,
(Madras Univ. B.Sc., 1992)
Solutjon. Obviously the propertics (i), (ii), (iii) and (iv) arc satisfied. Also
we ohserve that £.(x ) iscontinuousatx= a and x= — a. as well.
Now

-1
— _— ua< x<
%F(x): l-.2'a‘ 4= x=a
0, otherwise
=f(x), sa

In order that F (x) is a distribution function, f(x) must be a p.d.f. Thus we
have to show that

[Z fw ax=1

Now |7 f@ de=[® o ar=5-[% 1ax=1

Hence F ( x ) isad.f.
. Example 5-16. Suppose the life in hours of a certain kind of radio tube has
the probability density function :

fix)= 020, when x2 100

= 0, when x<100
Find the distribution function of the distribution. What is the probabilty that none
of three such tubes ina given radio set will have to be replaced during the first 150
hours of operation ? What is the probability that all three of the original tubes will
{xave been replaced during the first 150 hours ?  (Delhi Univ. B.Sc, Oct. 1988)
Solution. Probability that a tube will last for first 150 hours is given by
P(X<150)= P(0< X< 100)+ P(100< X< 150)
150 1150 100 1
100 f( )dx J X dx" 3
Hence the probability that none of the three tubes will have o be replaced
aiuring the first 150 hours is (1/3) = 1/27.

The probability that a tube will not last for the first 150 hours is 1 —

W—
Wi
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Hence the probability that all three of the original tubes will have to be replaced
during the (irst 150 hours is 273y = 8/27.
Example 5-17. Suppose that the time in minutes that a person has to wait at
a certain station for a train is found to be a random phenorienon, a probability
function specified by the distribution function,
F(x)=0, forx<0

=§, for 0< x< 1
=-;—, for 1< x<?2
=§, for 2< x< 4
=1, forx>4

(a) Is the Distribution Function continuous ? If so, give the formula for its
probabi lity density function ?

{b) What is the probability that a person will have to wait (i) more than 3
minutes, (ii) less than 3 minutes, and (iii) between 1 and 3 minutes ?

(c) What is the conditional probability that the person will have to. wait for-a
train for (i) more than 3 minutes, given that it is more than 1 minute, (ii) less than
3 minutes given that it is more than 1 minute ? (CalicutUniv. B.Sc., 1985)

Solution. (a) Since the valuc of lhc distribution function is the same at the
points x= 0,x= 1,x= 2, and x= 4" given by the_two forms, of’ F (x) for
x<0 and 0 x< 1, 0< x< land 1€ x< 2, 1< x< 2 and 2<x<4
2< x< 4 andx2 4, the distribution function is continuous.

Probzit;ility density function= f(x)= % F(x)

f(x)=0, for x< 0
1

30 for 0< x< 1,
0, for 1£x<?2
%, for 2< x< 4
0, forx=>4

(b) Let the random variable X represent the waiting time in minutes.
Then

(i)Required prabability = P (X> 3)=1-P(X<3)=1- F(3)
] 1 _1
33 .
P(X<3)=P(X<8)=P(X=13)
F(}):l

(Since, thc probability that a continuous vanablc takes a.fixed valuc is
7ero)

Ir

it

(i) Required probability

r
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(iii) Required:Probability = P (1< X < 3)- P( 1< X<3) -

=F@- F=3-3=

(c) LetA denote the event that a person has to wait for more than 3 minutes
and B the event that he has to wait for more than 1 minute. Then

P(A)= P(X>3)=§ [ef.(6),())]

AI—-

P(B)= P(X>1)=1-P(X< )= 1-F(1)= 1-%:%

P(AnB)= P(X>3n X>1)=P(X>3)= %
(i) Required probability is

i s . P(ANB)_ 174 _ 1
Falg)= P(B) 1727 2
(ii) Required probabnlny P(AIB)= %

Now P (A Bj=P (X< 3K > =P (I'< X< 3)=F@)~ F(1)= 3- %=%
f TIR Y= ﬁ_..l_

bxample 518. A petrol pump is supplied with petrol once a day. If its
daily volume X of sales in thousands of litges is distributed by
f(x)=5(I-x), 0<x<1,
what must be the capacityof its tank in order that the probability that its supply
will be exhausted in a given day shall be 0-01 ? (Madras Univ. B.E., 1986)
Solution. Let the capacity of the tank ( in "000 of litres) be ‘a’ such that

P(x2a)=001 = [} fx)ax= 001

= [l s(1-x) ac=001 o [5(:_‘5"))' = 001

= (1-a)=1/100 or 1-a=(1/100"
= 1- (1/100)"* = 1~ 0:3981 = 0-6019
Hence the capacnty of the tank = 0-6019 X 1000 litres = 601-9 litres.

Example 519  Prove that mean deviaiion is least when measured from the
median. " [DelhiUniv. B.Sc. (Maths. Hons.), 1989]

Solution. If f(x) is thé probability function of a random variable X,
ag X < b, then mean deviation'’M (A ), say, about the point x= A is given

by .
S TOS B L PEVIFIEY
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A C (b
=[x Arfooacs [21x- Alfa

= I:(A~ X)f(x)dx + I’:(x— Afxyax (1)

We want to find the value of ‘A’ so that M (A" is minimum. From the
principle of maximum and minimum in differential calculus, M (A) will be
minimum for variations in A if

MM g ZUA),

Differentiating (1) w.r.t.’ A’ under the integral sign, since the functions

(A- x) f(x) and(x— A) f(x) vanish at the point x=_ A*, we get

0 «.(2)

ML) _ [A fxyax[° f(x) e | -0
Also %: I:f(x)dx-[.l-—jjf(x)dx],

[~ [P reoa=]
=2 [A f(x)de-1= 2P(A)- 1, 1

where F(.) is the distribution function of X, Diffcrcnliaiing again w..l. A, we,get ¢
& ‘ o

dA?

Now M&)—(;_) = 0, on using (3) gives

M(A)= 2f(A) - (4)
&

2 roa=[ rxax

i.e., A isthe median value.
Also from (4), we see that
IM(A)
——5—+> 0,
0A
assuming that f( x ) does not vanish at the median value. Thus mean deviation is
least when taken from median.

~

*1f f(x,0) is a continuous function of both variables x and 0, poésessing

2 2
continuous partial derivatives L , of and a and b are differentiable
dxd0’ 9d0dx

functions of @, then

aie[ I:'f(x’ﬁ)dt ]= I:g‘g dx + f(b 9) %-f(a,e) %
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5520 Joint Probability Distribution Function. Let (X , Y ) be a two-
dimensional random variable then ‘their joint distribution function is dencted by
Fxy(x,y) and it represents the probability that simultaneously the observation
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(X, Y) will have the property (X <xand Y<y), i.e.,
ny(X.}’)=P(—¢-°<XSX,—°'°< YS)’)

x y
=I “ Sy (x, y) dx dy ... (5:15)

-— 00 -0

(For continuous variables)
vhere Srx, )20
And I I fXY(xr)') dxdy=| or % Zf(x»)’)=|
-0 ¥ —00 y
Properties of Joint Distribution Function
1. (i) For the real numbers a,, b}, a; and b,
P (a. <X< b|, a < Y< bz) = ny (b|, bz) + ny (a., 02)
= Fxy (@1, by~ Fxy (b1, a)
[For proof, See Example 5-29]
(if) Let ay < a,, by < b,. We have
X<a,Y<a)+(a <X<b,Y<Sa)=(X<b,Y<ay)
and the events on the L.H.S. are mutually exclusive. Taking probabilities on
both-sides, we get :
F(aj,a)+P(a <X sb,,Y<a))=F (b, a;)
= F(b,a)-F(@a,a))=P@<X<bh,Y<a))
F (b), a;) 2 F(a,, ay) [Since P (a;< X &by, Y<ay)20]
Similarly it follows that
F(a,b)-F(a)a)y=P(X<a;,a,<Y<by)20
= F (ay, by) 2 F (a), ay),
which shows that F (x, y) is monotonic non-decreasing function.
2. F(—o0,y)=0=F (x,— ), F (+ 00, + ) = 1
3. If the density function f{(x,y) is continuous at (x, y) then
2
S5y =l
5+5-3. Marginal Distribution Functions. From the knowledge of joint
distribution function Fyy (x, y), it is possible to obtain the individual
distribution functions, Fy (x) and Fy (y) which are termed as marginal
distribution function of X and Y respectivély with respect to the joint
distribution function Fyy (x, y).
Fy(x)=P(X<Sx)=P(X<x,VY<e)= lim Fyy(x, y).

Yoo
= Fyy (x, ) ... (5:16)
Similarly, Fy (y)) =P (Y<y) = P(X<o,Y<y)
= lim Fyy(x, y) = Fxy (=, ))

v =) oo
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Fx(x) is termed ds the marginal distribution function of X corresponding to
the joint distribution function Fxy (x,y) and similarly Fy (y) 1s called marginal
distribution function of the random variablc ¥ corresponding to the joint distribu-
tion function Fxy(x,y).

In the case of jointly di%rcte random variables, the marginal distribution
functions are given as

Fx(= Y, P(X<x,Y=y),
y
Fro)=3, P(X=x,Y<y)

X
Similarly in the casc of jointy continuous random variable , the marginal
distribution functions are given as

Fx(=1*_ { [~ fxy(x,y)dy} dx

Frov= 2 { [0 prepas) @

554  Joint Density Function, Marginal Density Functions. From the
joint distribution function F xy(x,y) of tWwo dimensional continuous random
variable we get the joint probabilty density function by differentiation as follows :

frr (x,y)=0*F (x,y)/0xdy

- lim P(x< X< x+8x,yS Y< y+3dy)
- 5x-40,8y =50 | 8x 8y

Or it may be expressed in the following way also :

"The probability that the point ( x , y ) will lie in the infinitesimal reclangular
region, of area dx dy is given by-

P{x-ldrsX<x+ldr,y-ldysy<y+ldyf=dFu (x,y)
and is denoted by fxr (x, y) dx dy, where the function fxr (x , y) is called the joint
probability density function of X and Y.

The marginal probability function of Y and X are given respectively

fro)= J:; fer(x,y)dx (for continuous variables)
=Y, prr(x,y) (for discrete variables)

X
.(517)

and fr(x)= J_°°°° fir(x.y) dy (for continuous variables)
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=Y per(x,y)
y

545

(for discrete variables)

(5-17a)

The marginal density functions of X and Y can be obtained in the following
manner also.

H@= =2 fexapay

and fy(y)- J Sfxr(x,y)dx

Important Remark. If we know the joint p.d.f. (p.m.£) fxy (x,y) of two
random variables X and Y, we can obtain the individual distributions of X and Y
in the form of their marginal p.d.f.’s (p.m.f’s) fx (x) and fr (y) by using (5-17) and
(5-17a). However, the converse is not true i.e., from the marginal distributions of
two jointly distributed random variables, we cannot determine the joint distribu-
tions of these two random variables.

To verify this , it will suffice to show that two different joint p.m.f’s (p.d.f.’s)
have the same marginal distribution for X and the same marginal distribution for

Y . We give beiow two juint discrete probability dlstnbuuons which have the
same marginal distributions.

JOINT DlS'I‘RlBUTlONS HAVING SAME MARGINALS

dFx (X)
. (5:17b)

Probability D:smlmaon I Probabzluy Distribution H

X
Nolo 1 se || 3o 1| se
0 | 028 037 | 065 0 035 o030} 065
1 |02 o013 035 1 |o15 02| o035
@ | 050 050 | 100 @ 1050 050 100

As an illustration for continuous random variables, let (X , ¥) be continuous
r.v.with joint p.d.f.

fir(x,y)=x+y; 0<s(x,y<1
The marginal p.d.f."sof X and Y are given by :

..(5:17 ¢)

fx(x)='15f(x.y)dy=1(', (x+y)dy= I ar
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= H@=x+] 0sx<1

Similarly fr()’)=,_[(1)f(x,y)dx=y+; L 0<y<1 ‘ (517 d)

Consider anather continuous joint p.d.f.
g(x',y)=[x+;](y+';] . 0< (x,y)$ 1 . (517¢)
Then marginal p.d.f.’sof X and Y are. given'by :

& (0= L‘) g(x.y)dy= [x+ ﬂ I(l) [y+ ‘;]dy
1 .

N [HI%] 0

= g@=x+1: 0sxs1|
Similarly g2@)=y+3 : 0<sy<1 |

(517 d) and (5-17 f ) imply that the two joint p.d.f.’s in (5-17 c) and (5-17 )
have the same marginal p.d.f.’s (5:17 d) or (5:17f).

Another illustration of continuous r.v.’s is given in Remark to Bivariatc
Normal Distribution, § 10-10-2.

5.5.5. The Conditional Distribution Function and Conditinal Prob-
ability Density Function. For two diamensional random variabl¢ (X ,Y ), the
joint distribution function Fxy(x , ) for any real numbers x and.y is given by

Fxy(x,y)= P(X<x,Y<y)

Now lct A be the event (Y <y) such that the event A is said 1o occur when ¥
assumes values up to and inglusive of y.

Using conditional probabilitics we may now write

2
b
2+

y

|-

(517f)

Fereo= [*_ PLAIX=x] dFy () 518
The conditional distribution function Fyx (y|x) denotes the distribution
function of Y when:X has already assumed the particular valuc x. Hence'
Fnx (ylx)= PlY<y|X=x)=P[A|X=x,

Using this expression, the joint distribution [unction Fxy(x,y) may be
expressed in terms of the conditional distribution function as follows :,

Fer@. 9= [*_ Frx(ylx) dFe @ .. (518 a)
Similarly

Fxroy= )Y Far(xly) dFy@) (518 b)

A4
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The conditional probabil‘ity density function of Y given X for two random
variables X and Y which arc jointly continuously distributed is defined as follows,
for two real numbcers x and y

Jrix (Y|x)=§;Fy|x(y|X) .. (519)

Remarks: 1. fx(x)> 0, then

fax(ylx)= %(’;%’

Proof. Wc have
FerGe,3)= [* | Frx(y1x¥ dFx @)

= .[_)cm Frix(ylx) fx(x)dx

Diffcrentiating w.rt.x, we get

Jdx
Differentiating w.r.t.y, we get

‘aa_y' [% Fxr(X,)')J=fr|x(y|x)fx(x)

9 Fxr(x,y)= Frx(ylx) fx (%)

= Srx,y)=frix (yIx) fx(x)
= fYIX(.}'|x)=%%'SL)'

2. Iffy () >0, then

far(xly)= %y(x(r)v_)
3. Interms of the differcntials, we have
P(x<X<x+dx|y<Y<y+dy)
_ P(x<X<x+dx, y<Y<y+dy)
- P(y<Y<y+dy)
_ Gy dedy ;
| =GB L far(xly) s
Whencefx r (x| y) may be interpreted as the conditional density function of
X on the assumption Y =y . '
5-5-6. Stochastic Independence. Let us consider two random variables X
and Y (of discrete or continuous type) with joint p.d.f. fyy (x,y) and marginal
pd.f’sfy (x) and gr () respectively. Then by the compound probability theorem

fr @, )= fx) g (Ix)
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where gy (y | x) is the conditional p.d.f. of ¥ for given value of X = x.

If we assume that g (y|x) does not depend on x, then by the definition of
marginal p.d.f.’s, we get for continuous r.v.’s

g=[" fe,y ax
= [ Kneoin &

= g(ylx) J_: f(x) dx

[since g (y|x) does not depend on-x |

=g(ylx) [~ f(.) ispd.fofX ]
Hence
g(y)=2g(ylx)
and  fyr(x,y)=fx(x) gr(y) o ()

provided g (y} x) does not depend on x. This motivates the following definition
of independent random variables.

Independent Random variables. Two r.v.'s X and Y with joint pdf.
fxr(x,y) and marginal p.df.'s fx (x) and gy (¥) respectively are said to be
stochastically independent if and only if

frr(x,y)=fx(x) gr ) - (5-20)

Remarks. 1. In terms of the distribution function, we have the following
definition : .

Two jointly distributed random variables X and Y are stochastically inde-
pendent if and only if their joint distribution function Fx,y ( . ,.) is the product of
their marginal distribution functions Fx(-) and Gy (.), i.e., ifforreal(x,y)

Fxy(x,y)= Fx(x) Gy(y) ..(5204)

2, The variables which are not stochastically independent are said to be
stochastically dependent.

Theorem 5-8. Two random variables X and Y with jgint p. df.f(x,y)are
stochastically independent if and only if fx, yix, y) can be pxpressed as the
product of a non-negative function of x alone and a non nega/fve function of y
alone, i.e., if )

Sy (x,y)= hx(x) kr (y) .. (5:21)
where h()2 0 and k()2 0.
Proof. IfX and Y are independent then by definition, we have

frr @, N=fx(x).gr(y)



Random Variables - Distribution Functions 549

where f (x) and g (y) are marginal p.d.f.of X and Y respectively. Thus condition
(5:21) is satisfied.

Conversely if (5-21) holds, then we have to prove that X and Y are indé-
pendent. For continuous random variables X and Y, the marginal p.d.f.’s are given’
by

F@=[" ren =" h@ko) &
=h@ [~ ko) dy= ¢ h(D), say o e®
and g 0)= " fx.) &= [T h) k() dr

= ko) [ h0) dr= o ko), say %)
where ¢; and ¢, are constants independent of x and y. Moreover

[ = fep axay=1

= [ ] hew ko) ax ay=1
= [j_""w h (x) dx][]_:o k() dy]: i-
= G =1 v (#%%)
Finally, we get
fer(x.y)= hx (X) kr () = c1¢2 hx (x) kr () [ using (**+)]
= (a1 h®) (c2kr ()
= fx(® g () [ from (*)and (++))

= X and Y are stocl{astically independent.

Theorcm 5.9; If the random variables X and Y aré stochastically inde-
pendent, then for all possible selections of the corresponding pairs of real numbers
(a1, by) , (a2, bo) where a;<b; for all i = 1,2 and where the values £ o are
aligwed, the events (a1 < X < b)) and (4. < Y < b,) are independen, i.e.,

Pla<X<b)N(@<Y<h)]=P@<X<bh)P(@a<Y<bh)

Proof. Since X and Y are stochastically independent, we have in the usual .

notations
frr(x,¥)= fx(x) gr (¥) - (*)
In casé of continuous r.v.’s, we have

Plam<X<bh)Nn@<Y<h)]= Jz’ J:z’ f(x,y) dx dy
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- ({2 s dx][f &0 dy] [ rom (+)

=P(am< X< b)P(ax< y< b2)
as desired.
Remark. In casc of discrete r.v.’s thcorems 5-8 and 5-9 can be proved on
replacing integration by summation over the given range of the variables.

Example 5.70. For the following bivariate probability distribution of X and
Y, fina

(P (X<1,Y=2), (ii)P(X<V), (ii)P(Y=3), (iWP(Y<3) and
) P(X<3.Y<4)

Y T 2 3

X 4 5 6
1 2 .2 3
0 0 0 3 E R R )
1 R 1 1 1 1 1
16 16 8 8 8 8
1 1 1 1 2
2 2 1w 4 ' u
Solution.  The marginal distributions are given below :
1% Y | 1 2 3 4 5 6 px(x)
1 2 2 3 8
0 L R R I 32
1 1 R 1 1 1 1 10
16 16 8 8 8 8 16
2 L 1 1 R 0 2 8
32 32 64 64 64 64
3 3 11 1 6 16 =
pr(y) 2 EvY P 13 25 = Ep(x)_
32 32 64 64 32 64 | Zp(y)=1
() P(X<1,Y=2)=P(X=0,Y=2)+P(X=1,Y=2)
16 16
(ié) P(X<1)=P(X=0)+P(X=1)
= 1 10_1 ( From at,é/e table)
327168
(iii) P(Y=3)= él ( From abovc table )
(iv) P(Y<S3)=P(Y=1)+ P(Y=2)+ P(Y=13)
3 + 3,11 23

TRt @
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(v) P(X<3,Y<4)=P(X=0,Y<4)+ P(X=1,Y<4)
+P(X=2,Y<4)
(50 %) ler w5+ 5
32 32 16 16 8 8
+[l+ l+ l+ l]'-9—
32 32 64 o4 16
Example 5:21. The joint probability distribution of two random variables X
andY is given by :
2 x=1,2,..,n
n(n+ 1)’ y=12,.,x
Examine whether X andY are independent.  (Calicut Univ. B.Sc., 1991)

Solution. The joint probability distribution table along with the marginal
distributions of X and Y is given below.

p(x,y)=

> X 1 2 3 n “pr(y)
, 7 2 2 ) In__
n(n+l) n(ntl) n(a+l) 777 a(atrl) | a(nel)
2 2 2 2 2(n-1)
= a(mtl) n(me1) n(nt1) | n(nt)
s 2 2 2(n-2)
- - n(nt+l) 777 n(n+l) r}(n+l)
) 2 2 2%x 2
" - - = a(neD) n(n+l)[n(n+1) -
n 2 2
- - - - n(n+l)|n(n+l)
(%) 2 2x2 2x3 2X n
P n(nt)y n(n+) a(nt ) "7 n(ntd)

Note thaty= 1,2,..,x.

When x=1, y=1; whenx=2, y=1,2; whenx=3,y=1,2,3 and
soon. °

From the above table, we see that

pxr(x,y)# px(x)pr(y) ;s V x,y
= X and Y are not independent.
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Example 5:22. Given the following bivariate probability distribu-
tion, obtain (i) marginal distributions of X and Y, (ii) the conditional
distribution of X given Y = 2.

Y X -1 0 1
0 s s Ws
I Ws 2s s
2 | %s Ws 2s
(Mysore Univ. B:Sc., Oct. 1987
Solution. -
X . -1 0 1 L p(x,y)
—| Y x
0 Ns s Ws 4s
1 Ns As WS 4is
2 Ns Ns  %s NAs
Lp(x,y) Ms s NS 1
y

(i) Margital distribution of X. From’ the above table, we get

iy 1y O 2 _s_1 - _i
P_{;,_Xg"l)-_ls—s, P(X=0)= 15 3, P(X=1)=
Marg?pdf.‘distribution ofY:
4 -1=5_2. DS BT §
P(¥=10)=5i P(Y=1)=3x=2: P(Y=2)=53= 3

(ii) Conditional distribution of X given Y =2. We have
P(X=xnY=2)=P(Y=2).P(X=x|Y=2)
P(X=xn¥Y=2)

= P‘i(x=x|y=2)— Fr=2)
o P(X= 11N Y=2) 2/15 2
P(X="11Y=2)= P(Y=2) 135

Exaniple 8 2.3. X and Y Gre.twp, a,ndom/yanables having the joint density
function, f (-x—fy)‘—‘il7 (2: + )) . -4 lindvb«mm,assume only the integer

vatues 0.1 4nd 2 Fmd the conditional dzstrlﬁuuon f{ forX sx’ ..
] (South Gujarat Univ. B}Sc., 1988]
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Solution. The joint probability function
F(x.3)= 22(2x+ )3 x= 01,25 y= 0,1,2
gives the following table of joint probability distribution of X and ¥.
JOINT PROBABILITY DISTRIBUTIONf(x,y) OFX AND 3’

Y- 0 1 2 fx (%)

X
0 0 1721 227 3/21.
1 221 3/21 421 921 |
2 421  5/21 /21 15/27

For example f (0, 0) = %(m 2% 0)= 0

1.0)= L =2 =L -4
-f(1,0)= 2_,(0+ 2x 1‘)- 27 f(2,0)= 2_,(0+ 2% 2)-\2_,
and so on. :

The marginal probability distribution of X is given by

' ‘ fx(x)= yzf(x»)').

and is tabulated in last column of above table.
The conditional,_.,distribution of ¥ for X = x is given by
Y=yix=x)= LX)
frx(Y=ylX=x) (%)
and is obtained in the following table.
CONDITIONAL DISTRIBUTIONOF Y FOR X =x

Y 0 1 2
X
0 0 173 2/3
g 1 2/9 3/9 4/9
2 4/15 5/15 6/15

Example 5:24. Two discrete random-variables X and Y have the joint
probability density function :

_Netp-pyr C x=
p(xOy)— y!(x_y)! oy"oolozonnxo xX= 0.1,2....
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where A, p are constants with k>0 and0< p< 1.

Find (i) The marginal probability density functions of X and Y.

(ii) The conditional distribution of Y for a given X and of X for a givenY,
(Poona Univ. B.Sc., 1986 ; Nagpur Univ. M.Sc., 1989)
Solution. (i)

; NP (- py
px(x)= 3, p(x.y)= ), Ty 1
y=0 y=0 ) '

Vet Oox 1p*(1-p)y? ANet . .
= SIT X Syl T xl 2 GP (1= p
y=0 y=0

x —-A
= lxe' , X= 0,1,2,...

4

which is the probability function of a Poisson distribution with parameter A .

i > x - - z-y
(=3 pxy)= Y XeZ(-p)

' - I}
g iy Y (x=y)!
_Qpye? y BO=p)” oy e’ pa-p
- ! (x-y)! = !
& y y
~Ap
- %%21 y=0,1,2,...

which is the probability fiinction of a Poisson distribution with parameter A p .
(ii) The conditional distribution of Y for given X is

pxr(x,y) _Metp(1-p)yx!

Prx(YI)= = ) T Ty xR
!
= STiay)1 PP 7= G P (1=p) 7 x>y

The conditional probability distribution of X for given Y is
X,y
par (xy)= 2Ee2)

Pr(xY)
_Ne'p(1-p)y7 y! .
STy I e (Apy (cf. Pant(i))
- e'llglz)x-y

G-y) 1 P ATip x>y

Example 5-25. The joint p.df. of two random variables X and.Y is
given by :

; 9+ x+y) [0S x< o)
e gty (05557)
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Find the marginal distributions of X and Y, and the conditional distribution of Y
forX=x.
Solution. Marginal p.d.f. of X is given by

o= [ fexyydy

B o (1+y)+ x
—2(1+'x)"[0 (1+y) 4
9 oo _3 . -
=5y o las ez aeylaey
=2(1+x)[|2(1+y) 0" |3(1+y) ]
L.l X
'2(1+x)‘ [2+3]
3034+ e
4 (14 x)°

Since f(x,y) issymmetricinx andy,themarginalp.d.f.of Y isgiven by
fe(y)= I°° f(x.y) dx
3+2
4 (1+y )“
The conditional distribution of Y for X = x is given by
Y= X= =;LXY(X, )
fa(Y=y| x) (%)
__9(1+x+y)  4(1+x)
2(1+x) (1+y)' 3(3+2x)
6(l+x+y)
T (1+y) (3+2x)

O<yxoo

; O<y<eo

Example 5:26. The joint probability density function of a two-dimen-
sional random variable (X,Y) is given by
f(x,y)=2; 0<x<1,0<y<x
= 0, elsewhere
(i) Find the marginal density functions of X and Y,

(ii) find the conditional density function of Y given X=. x and conditional
density function of X givenY =y, and
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(iii) fcheck for independence of X and Y.
' (M.S.Baroda Umv. B.Sc., 1987; Karnataka Univ. B.Sc., Oct. 1988]
.Solution. Evidently f (x,y)2 0-and

1 [x _5 M _
Io Io 2dxdy= 2 Io X dx=1
(i) The marginal p.df.’sof X and Y are given by
fx(x)=J‘_m;‘,fx:r(x.y)dy=J(’)t 2dy=2x, O<x<1
=10, elsewhere
fO= [T poteyrax= [ 2ae= 20-y), 0<y<1

=0, elsewhere
(ii) The conditional density function of Y given X is

fux(yxy=E2) 2 l

(%) = ,0<x< 1
The conditional density function of X givenY is
for(x,y) _ 2 1

R (x1)= TGy = 20—y -y 09!

(iii) Sincefx(x) fr(y)= 2(2)(1-y)# fir(x,y), X and'Y are not
independent. N
Example 5-27. A gun is aimed at a certain point (origin of the coordinate
system). Because of the random factors, the actual hit point can be any point (X,Y)
-in a circle of radius R about thé origin. Assume that the joint density of X and Y is
constant in this ci(cle given by :
fra(x,y)=k, for #+ y*< R?
= 0, otherwise
(i) Compwse k, (ii) show that
2

K(n= = {h[ﬁ]

= 0, otherwise

[Calcutta Univ. B.Sc.(Stat. Hons.),1987]

Solution. (i) The constant k is computed from the cons1dcrauon that the total
probability is 1, i.c.,

12
} , for—R<x<R

Jj;f(x..y)dxdy?l = U kdxdy= 1

—00 —o0 ‘2+ yzst
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= 4[] kaxay=1
I

where rcgnon I is the first quadrant of the circle
°+ y = R*.

= 4 ]R([ - ldy]dx=l
= 4k I: VR - & dx=1

R
=1
0

= 4k

VT B (£)

K.z L
22 nR?
fa(x,y)= V@R ; 2+y'<R
=0, otherwise

= 4k - [ ]=l = k=

VR -<

I 1-dy
_,{_Rz_ 2

[secase 2+ 7 8 = - (8- )" <y (8= #)"]

1

@ o= fene=—

Example 5:28. Given:
f(x,y)= € Lgay(x) . Loy (),
find (i)P(X>l),(ii)P(X(Y|‘X<2'Y),(iit)l.’(l<X+Y<2)

[Delhi Univ. B.Sc. (Maths Hons.), 1987]
Solution. We are given :

f(x,y)=€™? ; 0<x<oo, 0<y<oo (1)
~(e*)(e)
=fx(x).fr(y) i 0Sx<oo, 0<Sy<o
= X andY are¢ independent and
fx(x)=€"; x20 and fr(y)=¢€"; y20 . (2)
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M P(X>1=] f(x)d=] e*ax
. 1 1 !
I 2 Ll |
-1y " e )
. %
(i) P(X<Y)X<2r)= P(x;(’;:‘;‘y; )
_ P(X<Y)
T P(X<2) -~ ()
X>Y
-X
P(X<Y)= J[ff(x y)dledy
0
=I[e" e'i’ y] Ie’(e"—l)dy
0 -0 0
- £-_2:+e’7 °°._ 1__1-.1
R ) 0 2"2
P(X<2¥)= | If(x,y)dx] =-Ie-'(e -y
oL
e oo 1 2
= —| =+’ =]l-===
Substituting in (3), =3 ” 03 33
P(X<Y|X<2Y)=E/—3-=Z
aip  P(1<x+v<2)=[] rex.y)axty= ” f(x,y)dxdy
- vy !
02

()]

Y
(100 (2,0)
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-I][ f-fl(Xy)dy] . [jz (x ,y)dy]

0Ol 1-x

2-2x 2-
-J Ie’dy dx + J e"dy
1-x 0
e .-
_l[e dx+ { (e )dx'
2
(e e v (e o)
0 1
2
_(e'l—e"j | x I(l’— I el x+e” | 1
2/e - 3/é
Example 529. (i) Let F(x;y). be the df. of X andY . Show that
P(a< X< b,c<Y<d)=F(b,d)- F(b,c)- F(a,d)+ F(a,c)
where a, b, c,d are real constants a< b ; c< d.
Deduce thatif : F(x,y)=1, for x4+ 2y2>1
F(x,y)=0, for x+ 2y< 1,
then F (x,y) cannot be joint distribution function of variables X andY.
(ii) Show that, with usual notation : :forallx,y,
Fx(x)+ Fr(y)- 1< Fxr(x,y) < ‘JFx(x)Fr(y)
* (Delhi Univ. B.Sc. (Maths Hons.), 1985 ]

Solution. (i) Let us define the events : .
A:(X<a):B:(X<b);C=(Y<cf;D=(Y%4d);

—

(=

fora< b;c<d. v (Od) "(b,d)
P(a< X<bnNnc<Y<d) d Z
=P[(B-AND-0)] ¢ ¢ //..(bc)
=P[BAD-C)-AnD-0)) (*) (a,c) ’
(By distributive property of sets) '

We know thatif ECF = ENF=E, then 0 [ b ;

P(F-E)= P(En F)= P(F)- P(EnF)= P(F)- P(EY .. (s%

Obviously AcB = [AN(D-C)] c[Bn(D-C)]

Hence using (*#), we get from (%)

P(a<X<bnc<Y<d)=P[Bn(D- C¥1- P{An(D- C)]
=P[(BND)-(BNC))- P{AnD)- (ANnC)]



5.60 Funda;nentals of Mathematical Statistics
=P(BND)= P(BNC)-P(AND)Y+ P(ANC) ..(**+)
[On using (*#), sinceCc D=>BNC)cBNDYand(ANC)c(AnD)]
We have :
P(BNAD)=P[X<bnNnY<d]l=F(b,d).
Similarly
PBNC)=F(b,c); P(AND)= F(a,d) and P(ANC)= F(a,c)
Substituting in (***), we get :
P{a<X<bnc<Y<d)=F®b,d)-F®b,c)-F(@a,d)+F(a,c)..Q)
We are given F(x,y)=1, for x+ 2y21 @)
=0, for x+ 2y<1
In(1)letustake : a=0, b=1/2, ;¢c=1/4,d=3/4 st.a< b and
¢ < d . Then using (2) we get :
F(b,d)=1;F(b,c)=1;F(a,d)=1; F(a,c)=0.
Substituting in (1) we get :
Pa<X<bnc<Y<d)=1-1-1+ 0= -1 ;
which is ot possible since P (.) 2 0.
Hence F (x,y) defined in (2) cannot be the distribution function of variates
X and?. ' .
" (i) Let us define the events : A = {XS x} i B= {YS y}
Then P(A)=P(X<x)=Fx(x); PB)=P(¥<y)= Fy(y)} 3)
and P(ANB)= P(XSxNnY<y)= Fxy(x,y)
(ANB)cA = P(ANB)S P(A) = Fxy(x,y)< Fx(x)
(ANB)cB = P(ANB)<P(B) = Fxr(x,y)SFy(y)
Multiplying these inequalities we get}
Fxy (x,y)S Fx(x)Fr(y) = Fa(x,9)S VE (x)Fr(y) @
Also P(AUB)<1 = P(A)+ P(B)~ P(ANB)< 1
= P(A)+ P(B)- 1< P(ANn B)
= Fx(‘x)'f' Fy(y)—-1< Fxy(x,y) . (5)
From (4) and (5) we get : .
Fx(x)+ Fr(y)=1< Fxr(x,y) < VFx(x)Fy(y), asrequired.

Example 5:30. IfX andY are two random variables having joint density
function .

f(x.y)= % (6- *-y);0<x<2,2<y<4

= 0, otherwise
Find (i) P(X<1Y<3), (i) P(X+Y<3) and(iii) P (X< 1} Y < 3)
(Madras Univ. B.Sc., Nov. 1986)
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Solution. We have

@  pPx<inr<d=T'_[3 rx.y)axa

00 |

1. |
= Io 123 g(0-x-y) dedy =
(ii) The probability that X +Y will be/less than 3 is
_ (1 (3-x1 . _ 5
P(X+ Y<3)= Io 5, g(6-xry) drdy = >
(iii) The probability that X < 1 when itisknown thatY < 3 is
P(X<1nY¥<3) 3/8 3

P(X<1IY<3)= =Py = 555

[‘P(Y< 3)= IO2 23 -81-(6—x—y)dxdy=%]

Example 5-31. If the joint distribution function of X and Y is given by :

F(x;y)=1-€ -€"+ e x>0,y>0

=0; elsewhere

(a) Find the marginal densities of X and Y.
(b) Are X and Y independent ?
(¢)FindP(X< 1NnY< 1) andP (X+ Y< ). (1.C.S., 1989)
Solution. (a) & (b) The joint p.d.f.of ther.v.’s (X ,Y) is given by:

2
f:\'V(x'Y)= a—fa-‘x(—fay’-y—):’:\ _a_ax_ [e“’_ e-(x+’,)]

=" x20,y20

. =0; otherwise w (i)
We have

fer(x,y)=€%.7=fx(x)fr(y) . (i)

where HK(x)=€*;x20; fri(y)=e’;y20 .. (iii)

(ii) = X andY ar¢ independent,
and (iii) gives the marginal p.d.f.’sof X and Y.

@ Pxstarsy=[l [l iy deay
(i ea)([g o)
= (11. e.")z
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1 1-x
P(x+Y<n=] | f(x.y)=I[ I'f-(x,y)dy]dx Y
x+ ysS Iv 0 0 (0,1)

1 1-x
= [e" I e"dy]dx

0

0

O ey e O

(1~ )ax = 1~2¢7

Example §:32.  Joint distribution of X and Y is given by

—(P+yy:
fx,y)=4xy e * "V x20,y20.
Test whether X and Y are independent.
For the above joint distribution , find the conditional density of X given

Y=y (Calicut Univ. B.Sc., 1986)

Solution. Jointp.d.f.of X and?Y is

2 2
f(x,y)= 4xy-e'(‘ *9): x20,y20.
Marginal density of X is given by

=] fyydy=] ag ~E+H g
0 0

2“ 2
4x = * J yer-dy

0
= 4x e—"2 . fe" . 421 (Pul y'= 1)
0
=2&t-€ " | e"r;

2
= filx)=2xe*; x20
Similarly, the marginal p.d.f. of Y is given by

(y)= J f(x,y)dx =2y e"z: y2 0
0

Since f(x,y)=fi(x) - fa(y), X andY are independently distributed.
The conditional distribution of X for given.Y is given by :
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- =y L(X:Y)
f(X=x|Y=Yy) AT

2
=2xe*; x20.

EXERCISE 5(e)

1. (a) Two fair dice are tossed simultaneously. Let X denote the number on
the first die and Y denote the number on the second die.
(i) Write down the sample space of this experiment.
(ii) Find the following probabilities :
(1) P(X+Y=8), (2)P(X+¥28), (3)P(X=Y),
(4)P(X+ Y=6|Y=4), (5)P(X-Y=2).
(Sardar Patel Univ, B.Sc., 1991)
2. (a) Explain the concepts (i) conditional probability, (ii) random variable,
(iii) independence of random variables, and (iv) marginal and conditional prob-
ability distributions.
(b) Explain the notion of the joint distribution of two random variables. If
F(x , y) be the joint distribution function of X and Y , what will be the distribution
functions for the marginal distribution of X andY ?
What is meant by the conditional distribution of Y under the condition that
X =x?7 Consider separately the cases where (i) X and Y are both discrete and
(ii) X and Y are both continuous.
3. The joint probability distribution of a pair of random variables is given by
the following table :-

\

X 12 3 | Fnd:

(i) The marginal distributions.

1 01 01 02 (ii) The conditional distribution of X given
) : i Y=1.

2 02 03 Ol | myr{(x+v)<4}.

4. (a) What do you mean by marginal and conditional distributions ? The
following table represents the joint probability distribution of the discrete random
variable (X ,Y)

X 1 2 3
Y
) 1 b2 173 0
2 0 % 1%
3 V18 Va %s

(i) Evaluate marginal distribution of X.
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(i) Evaluate the conditional distribution of Y given X = 2,
(Aligarh Univ. B.Sc., 1992)
(b) Two discrete random variables X and Y have

P(X=0,Y= 0)-- P(X=0,Y=1)=

ol ol——

P(X=1,Y= 0)=; s P(X=1,Y=1)=

Examine whether X and Y "are independent.
(Kerala Univ. B.Sc., Oct. 1987)
S. (a) Let the joint p.m.f. of X; and'X; be

p(xn,xz)=&2tl-x—z; =123 ;x=12
= 0, otherwise
Show that marginal p.m.£.’s of X, and X, are
2x, + 6 N
nix)= '21 3 ia=1235 p(x)= % P X=1,2
(b)Let
f(x,x)=C(xix+ ) ;0<(n, n)<l
= 0, elsewhere
(i) Determine C.

(ii) Examine whether X, and X; are stochastically independent.
g(x)= C(§x1+ ),
g(n)=Clin+e-1)

Ans. ()C= . (i)

Since g(x1).g(x2) # f(x,x2), X, and X, are not stochastically inde-
pendent.

6. Find k sothat f(x,y)= kxy, 1< x< y< 2 will be a probability
density function. A (Mysore Univ. B.Sc., 1986)

2 /2
Hint. [ f(x.y) dedy=1 = k]x[] y dy]dx: 1 = k=8/9
1 x
f(x,y)=€e"*";x20,y20
7. (a9 I =0 ;lsewhere
is the joint probability density function of random variables X and Y, find
()P(X< 1), (i))P(X>Y), and (i) P(X+ Y< 1).

, 1 o1 N 2
Ans, (i) 1- g (ii) 2 and (iii) 1 p
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(b) The joint frequency function of (X, Y') is given to be
f(x,y)=Ae™’; 0<x<y, 0Sy<+e
=0 ; otherwise
(i) Determine A.
(ii) Find the marginal density function of X.
(iii) Find the marginal density function of Y.
(iv) Examineif X and Y are independent.
(v) Find the conditional density function of Y givenX =2.
- [Madras Univ. B.Sc. (Main Stat.), 1992]
(c) Suppose that the random variables X and Y have the joint p.d.f.
_Jkx(x-y), 0<x<2, —x<yv<x
f(x.y)—{ 0, elsewhere .
(i) Evaluate the constant k . '
(ii) Find the marginal probability density functions of the random +.iables.
(South Gujarat Univ, B.Sc., 1988)
8. (a) Two-dimensional random variable (X, Y) have the joint density
f(x,y)=8xy,0<x<y<1
= 0, otherwise
(i) Find. P(X< 172 nY< 1/4).
(i} Find the marginal and conditional distributions.
aii) AreX andY independent? Give reasons for your answer.
' (South Gujarat Univ. B.Sc., 1992)
fitkly)=2x/y* :0<x<y,0<y<l

fitxiy=4x(1-xY),0< r< 1
Ans. = 0, otherwise i
fiy)=4y,0< y< 1 fa(y | x)=2y/(1=¥); x<y<1,0<x<1
9. (a) The random variables X and Y have the joint density function :
f(x,y)=2, ifx+y<1, x>20and y20
= 0, otherwise
Find the conditional distribution of Y , given X = x .
(Calcutta Univ. B.Sc. (Hons.), 1984)
(b) The random variables X and Y have the joint distribution given by the
probability density function :
Flx.y)= { 6(1-x-y), forx>0,y>0, x+ y< 1

0, elsewhere
Find the marginal distributions of X and Y . Hence examine if X and Y are
independent. [Calcutta Univ. B.Sc. (Hons.), 1986)
10. If the joint distribution function of X and Y is given by
F(x,y)=(1-¢€¢")(1-¢’) forx>0,y>0
= 0, elsewhere
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(Dethi Univ. M.A.(Econ.), 1988)

Find P(1< X<3,1<Y<?2).
3 " 2

Hint. Reqd. Prob.=| [ ¢ ar | [ e”dy]; (1-e2)1-¢?)
1 1
11. LetX and Y be two random variables with the joint probability density

function
8xy,0<x<y<1

f(x.y)= { 0 , otherwise

Obtain :
(i) the joint distribution functionof X and Y.

(ii) the marginal probability density function of Y ; and
(i) P(X<%13<Y<).
12. Let X and Y be joindy distributed with p.d.f.
1
=(l+xy), Ix|l <1, <1
f_(m)=[ L(lexy), Ixl <1, 1yl
0 , otherwise

Show thatX and Y are not independent but X* and Y* are independent.
1
Hint. ﬁ(x)=_[f(x,y) dy = %,-1<x<1;
g
fly)= Ilf(x,y) dx=%,—1<y<1
Since f(x,y) ¢j;(x)fz(y) ,X andY are not independent. However,
Vx

P(X*<x)= P(IX1€Vx)=] A(x)de=Vx
&
P(X’<sxnY<y)=P(IX|<Vx N |Y]|<Vy)
xr Yy
=] [ If(u,v)dv]du
el -y
N ]

=P(X’<x) -P(Y’<y)

= X and ¥* are independent.
13. (a) The joint probability density.function of the two dimensional random

variable (X , ). is given by :



Random Variables - Distribution Functions 567
_| P®y/716, 0sx<2,0<y22
f(x,y)-{ -0, elsewhere
Find the marginal densitiesof X and Y. Also find the cumulative distribution
functions for X andY. (Annamalai Univ. B.E., 1986)
3 3
Ans. fy(x)= "7 1 08x<2; fr(y)=%; 0<y<2
0 ; y< 0
Fy(y)=1y716 ; 0sy<?2
1 s y>2

0 . X< 0
Fx(x)= ’ %716 ; 0< x< 2
1 ;x> 2
(b) The joint probability density function of the two dimensional random
variable ( X ,Y) is given by : !
8 ..
f(x.y)= l XY 1< x<y<2
0 , elsewhere
(i)- Find the marginal density functions of X and Y,
(ii) Find the conditional density function of Y given X = x, and conditional
density funciton of X givenY =y. .

(Madras Univ. B.Sc. (Stat. Main), 1987]

2
Ans. (i) fx(x)=lf(x,y)dy=§x(4-x’) 1€ x<2

=0 ; otherwise
4
fr(y)= J‘Vf(x.y)dx=§y(yz—l) ; 1gy<2
1
v 1< x<y

2x
Mr(xiy) = ﬁ

Jfxy) oy
frx(yrx) =25 F= 775 3 xS ys 2

14. The two random variables X and Y have, forX = x and Y = y, the joint
probability density function :
f(x,y)= ',

2x"y

Derive the marginal distributions of X and Y . Further obtain the conditional

distribution of Y for X = x and also that of X givenY=y.
(Civil Services Main, 1986)

, for 1< x< o and %<y<x

P 4
Hint. fx(x)= ]f(x.y)-dy= If(x,y)dy
y 1/x
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A= [ fx,y)rdx

Xy=1

= [fOxy)ar; 0<y<1
17y

= If(x.y)dx; 1S y< e
y 0
15. Show that the conditions for the tunction

f(x,y)=k esp [Ax2+ 2Hxy+ Byz] , —00<(x,y) <o

10 be a bivariate p.d.f. are '

()A<0, (i)B<O (iii)AB-H20.

Further show that under these conditions,

172
L (an- )

Hint. f(x,y) will represent the p.d.f. of a bivariate distriibution if and

only if

xt

J:‘, I:o f(x,y)dcdy=1

o0 - 2 _
= k _[_oo _[_mexp [Af+2ny+ By ]dx dy =1 e (¥)
We have

A2+ 2Hxys 7= a2+ Bloys By
2 2
=A[(x+-§y] + ABA_zH ,yzl o (*%)
Similarly, we can.write
2 2
Ad+ 2Hxy+ By’FB[(ﬁ %x]+-ABB—,Hf} L (4%

Substituting from (**) and (***) in (*) we observe that the double integraj on
the left hand side will converge if and only if

A<0,B< 0 and AB- H*2 0,
as desired.
Let us take A=-a ; B=—b { H=h $0 that AB — H:= ab- h*, where
a>0,b>0.
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Substituting in (*), we get

% % b-hz_ 1
"J_,, .[_” CXP[- g—;—yz- ;(-ax+hy)’] dedy=1

= kj:;[ex‘{_ ab; " yz] . meexP{"‘l;(M-hX)z}dx]dy

=1 . (R2%%)
(By Fubini’s theorem)

o C T Py [_ﬁig

Now I_ooexp{ a(ax hy) pdx=]__ exp 15
(ax— hy= u)

c

R
0o _22
[ j_oo e cu du= \IR]

Hence from (***#), we get

k \/?I:o exp {- ab; hzy’} dy= 1
= kJ?VJ}zI

_1 7_ 1 3
= = —Nab-k* = —NAB-H* .

OBJECTIVE TYPE QUESTIONS
1. Which of the following statements are TRUE or FALSE.
(i) Given a continuous random variable X with probability density function
f(x), thenf(x) cannot exceed unity.
(ii) A random variable X has the following probability density function :
f(x)=1x,0<x< 1
= 0, eisewhere
(iii) The function defined as
f(x)=1x],-1<x< 1
= 0, elsewhere
is a possible probability density function.
(iv) The following represents joint probability distribution.

X
1 2 3
Y

-1 (19 1/18 118
118 289 39
1/8 1/18 1/18

—_—0
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IL. Fill in the blanks :

(i) Ifp(x) and p,(y) be the marginal probability functions of two inde-
pendent discrete random variablies X and Y, then their joint probability function

p(xy)= ..

(ii) The functionf( x) defined as

f(x)=|x], -1<x<1
= 0, elsewhere

is a possible ......

5-6. Transformation of One-dimensional Random Variable. Let X be a
random variable defined on the event space S and let g (-) be a function such that
Y=g (X )isalsoar.v.definedonS . In this section we shall deal with the following
problem :

"Given the probability density of ar.v. X, todetermine the density of a new
rv.Y=g(X)."

It can be proved in general that, if g () is any continuous function, then the
distribution of ¥ =g (X) is uniquely determined by that of X . The proof of this
result is rather difficult and beyond the scope of this book. Here we shall consider
the following, relatively simple theorem. '

Theorem 59. Let X be a continuous r.v. withp.df.fx(x).Lety= g(x)
be strictly monotonic (increasing or decreasing) function of x. Assume that

g (x) is differentiable (and hence continuous) for all x. Then the p.df. of the r.v.
Y is given by

hy(y)= fx(x)

where x is expressed in terms of y.

Proof. Case (i). y=g(x) is strictly increasing function of x (i..,
dy/dx> 0.Thedf. of Y is given by

Hr(y)= P(Y<Sy)=P[g(X)< y]= P(X< g ()],
the inverse exists and is unique, since g () is strictly increasing.
Hy(y)= Fx[g"(y)], where F is the d.f. of X

= Fx(x) [ y=g(x) = g'(y)=x]
Differentiating wr.t.y, we get

d d d
b (y)= 5 Fr(x))= d_I(Fx(I))d—;

,

dx
dy

=ﬁ:(x)§§ , - @
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Case (ii). y=g(x) is strictly monotonic decreasing.
Hr()=P(Y<y)=Plg(X)<yl=P[X2g"(y)]
=1-P[x<g'(y)]=1-Flg'(n)]=1-Fx(x),
where x=g ' (y), the inverse exists and is unique. Differentiating w.r.t, y , we
get
o= [1=Fe(x) 1 5= (0 &

—dx
=h(x) -y (*%)
Note that the algebraic sign (-ive) obtained in (**) is correct, since y is a
decreasing function of x = x is a decreasing function of y = dx /dy< 0.
The results in (*) and (**) can be combined to give

hr ) = fx (x)

a
dy

Example 5-33. Ifthe cwhulative distribution function of Xis F (x ) , find the
cumulative distribution furiction of

(i)Y=X+ a, (i)Y=X-0b, (iii)) Y= aX ,

(iv)Y= X, and wY=Xx?

What are the corresponding probability density functions ?

Solution. Let G (*) be the c.d.f. of Y. Then
(i) G(x)= P(Y<x)=P[X+a< x)=P[X< x-a]l=F(x- a)
(ii) Gx)= P(Y< x)=P[X-b<S x]=P[X<x+ b]l=F(x+ b)

(i) G(x)= P[aX < x]= P[Xs f] a>0
=F(£], ifa> 0
a
and G(x):P[xz£]=1—P[X<£]
a a.
= 1-r[5], ifa< 0
a

(iv) Gx)=P[YSx]=P[X’<x]= P[XS x"’]: F-.(x"’)
(v) G(I)= P[xzs X]= [_xuzs X< xl/z]

= P'[xs 27— p[x< -#2]
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=0, ifx< 0
=F(Vx)- F(-Vx-0), ifx> 0
Variable . df. pdf.
X F(x) Ax)
X-a F(x +a) fix+a)
aX } F(x/a) a> 0} (1/a) f(x/a), a> 0
1-F(x/a) ,a< 0 (-1Va) f(x/a), a< 0
1
X? F(Nx - F(~-x~0) T[f\/T+f(—‘Jx)]
} for x>0 2(x) " for x> 0
0, otherwise =0 for x< 0
3 13 1 VN 1
X F&) 36—
EXERCISE 5(f

1. (a) A random variable X has F (x) as its distribution function [ f(x) is
the density function ). Find the distribution and the density functions of the
random variable :

(i) Y= a+bX ,a and b are real numbers, (ii) Y= X "', [P (X= 0)= 0],

(iii) Y= tan X, and (iv) Y= cos X.

., -1<x<1

(b) Let f(x)= { 0 . elsewhere

be the p.d.f. of the r.v. X. Find the distribution function and the pdf.of Y= X %,
[ Delhi Univ. B.Sc. (Maths Hons.), 1988 ]

Hint. F(x)= P (X< x)= _rf(x)dx= F(x+ 1)
=1

e ()
Distribution function G () of Y= X 2 is given by :
Gr=F(Vx)-F(-V¥x) ; x>0 [ c.f. Example 5:33 (v) ]
1 - 1
=3+ D=+ 1) (From ()

=Vx ; O<zx<l1
(As- 1<x<1, Y=X? liesbetweenOand 1)

pdf.ofY= X?* is g(x)= G'(x)= 5%}- ; 0<x<1
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2.LetX beacontinuous random variable with p.d.f.f(x).LetY = X % Show
that the random variable ¥ has p.d.f. given by

Ly %y
- _ L y>0
. lﬂy FCh)+ £(- )1, y>
0, y< 0
3. Find the distribution and densitiy functions for (i) Y= aX+ b, az 0,
b real, (i) Y = ¢*, assuming that F (x) and f (x) , the distribution and the density
of X are known.

Gy)= Fly-byal,  ifa>0 _ 1 (y=b)
Ans. () Gy)= 1-Fly-by/a), if a< o} 3“”‘|a|f( a ]

G@y)= F(logy), y> 0} g0)= 7 f(logy), y> 0
= 0, yS 0] - 0’ y <0
4. (a) The random variable X has an exponential distribution
f(x)=€", 0<x<
Find the density function of the variable (i) Y= 3X + 5, (i) Y= X°.
(b) Suppose that X has p.df.,
f(x)=2x, 0<x<1
= 0, elsewhere
Findthepdf.of Y= 3X+ 1.

Avs. g(y)=2(y-1), 1<y<4
§. Let X be a random variable with p.d.f.
f(x)= %(x-l- 1) -1<x<?2

(ié)

= 0, elsewhere
Find the p.d.f. of U= X *. { Poona Univ. B.E., 1992 ]
6. Letthe p.d.f.of X be
f(x)= %. -3<x<3

= 0, elsewhere
Findthe p.df.of Y= 2X%- 3,
7. Let X be a random variable with the distribution function :

0, x<0
Fx(x)=1x, 0 x<1
1, x> 1
Determine the distribution function F y (y) of the random variable Y = VX
and hence compute mean of Y. [ Calcutta Univ. B.A.(Hons.), 1986 ]

§-7. Transformation of Two-dimensional Random Variable. In this sec-
tion we shall consider the problem of change of variables in the two-dimensional



574 Fundamentals of Mathematical Statistics

case. Letthe r.v.'s U andV by the transformation u= u(x,y),v=v(x,y),
where u and v are continuously differentiable functions for- which Jacobian of

transformation

dx dy
J_a(x,z)_ ou Ju
T d(u,v) |9x dy

Ldv OV

iseither >0or <0 throughout the (x, y ) plane so that the inverse transformation
is uniquiely givenby x= x(u,v), y= y(u,v).

Theorem 5-10. The joint p.df. guv(u,v) of the transformed variables U
andV is given by

gw(u,v)=fr(x,y). IJI
where | J | is the modulus value of the Jacobian of transformation andf(x,y) is
expressed in terms of u and v.
Proof. P(x< X< x+ dx,y<Y<y+ dy)
=P(u<U<Su+ du,v<V<yvy+dv)

= for (x,y) dx dy= guv (u,v) du dv

= 8UV(M.V)dudv=fxr(41:.y)iMLl du dv

o(u,v)

a(x,y) | _
(u.v) = fuo (x,y) JI

Theorem §-11. If X and Y are independent continuous r.v.’s, then the p.df.
of U= X + Y is given by

hw= [ SO fr@-v) dv

Proof. Letfr (x,y) be the joint p.df. of independent continuous r.v.'s X
and Y and let us make the transformation :

= g (u,v)=far(x,y)

u=x+y, v=x = x=v, ysu-v
dx dy
J_ng y) |ou 8u_|0 ll.___1
Sawon [ax |t h 1lF
dv dv

Thus the joint p.d.f. of r.v.’s U and V is given by

gw(u,v)= for(x,y) IJI
=fi(x)fr(y) I
(Since X and Y are independent)

=fr(v) fr(u~v)
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The marginal density of U is given by

m(w)= [, gwiu,v) dv

= [ mO) fr(u-v) av

Remark. The function A (-) is given a special name and is said to be the
convolution of fx (-) and fy (-) and we writc
h()=fx() * fr()
Example 5-34, Let (X ,Y) be a two-dimensional non-negative continuous
r.v. having the joint density :

2 2
f(x,y)= { 4xy e+ y50,920
0 , elsewhere
Prove that the densitiy function of U.= VX2+ Y2 is
2
h(u)= { e , 0S u< oo
0 , elsewhere

[ Meerut Univ. M.Sc., 1986 ]
Solution. Let us make the transformation :

u=V2+y and v=1x

= v20,u20and u2v = wu20and 0<vsu
The Jacobian of-transformation J is given by
. ax 3y
1_0d(u,v)_ |0u du|__ _ y
J d(x,y) dx dy V/x2+y2
dv dv

The joint p.d.f. of U and V is given by
gu,v)=f(x,y) IJI
(+y?) _&ﬁ
y

=4xye

=4 Vg4 y e'(’z" ")

2
._.{4vu.e"" s u20,0svsu
0, othérwise
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Hence the density functionof U= VX 2+ ¥? is
h(u)= Iu g(u,v) dv= 4ue"‘2 Iu vdv
0 i ’ (1

2
- {Zu’ e, u20
0, elsewhere

Example 5-35. Let the probability density function of the random variable
Y) be

f(x.y)={

T2l 950,050

o

0 , elsewhere
Find the distribution of 5 (X - Y). [ Nagpur Univ. B.E., 1988 |
Solution. Let us make the transformation :

u= %(x— y) and v=y

= x=2u+v and y=v
The Jacobian of the transformationis :
ax dx
_|du 8v_‘2 l|_
=1ay |7 lo 1l=?
ou OJv

Thus, the joint p.d.f. of the random variables (U, V') is given by :
" 2 -(Va)(u+v)

e , —oo<U<oo,v>=-2u if u<0
g(u,v)=1

o

v>0 if u20 and a>0
L0 , elsewhere
The marginal p.d.f. of U is given by

I_°°2u % exp{—~(%a) (u+v)ldv

= l e—h/c . u<0
Q) = | ”‘;
-[0 < exp{~(Ya)(u+v)}av
= & e—w«: ., 820
Hence
gu(u) = é e —00 <Y< 0o
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Example 5-36. Given the joint density function of X andY as
f(x,y)= %x €’ ,0<x<2,y>0

= 0, elsewhere
Find the distributionof X+ Y .
Solution. Let us make the transformation :
u=x+yandv=y = y=v,x=u-v ’

The Jacobian of transformation J = %‘VL; = 1 and the regio/n'() <x<2

andy > Otransformsto0 < u— v< 2and v> Oasshown iii the foliowing figure.
v 7

The joint density function of U and V is given by
g(u,v)= %(u—v) e’ :0<v<u,u>0
To find the density of U= X + Y, we split the range of U into two parts

(i) O0< us<s 2 (regionI) (ii) u>.2 (region II) (which is suggested by the
diagram).

ForO< u< 2,(Region]):

h(u)= J};‘ g(u,v)dv= % J};‘ (u-v) e’ dv

l | —pY - -V v=u
: € (U=v)+ €7 | ,_ 0 (Inegration by parts)

(e*+u-1)

O



578 Fundamentals of Mathematical Statistics
For2 < u< oo, (Regionll):

h(u)= -;— :_2 (u—v) e’ av

u

ler (tav-w) P70

3
= % e" (l+ e’)

(on simplification)
Hence
Y+ u-1),0<us2
g(u)= % e’ (1+ e’], 2< u< o
0 , elsewhere

1 MISCELLANEOUS EXERCISE ON CHAPTER FIVE

1. 4 coins are tossed. Let X be the number of headsand Y be the number of
heads minus the number of tails. Find the probability function of X, the probability
functionof Y andP (-2< Y< 4).

Ans. Probability function of X is

Values of X, x I 0 1 2 3 4
1 4 6 4 1
Pi(x) ¥ 16 %8 16 16
Probability function of Y is
Valuesof Y, y l 4 2 0 -2 -4
1 4 6 4 1
p2(y) | % 1€ 1€ 1.€ 16
. 4+ 6+4 17
-2< =27 2L
P(-2<Y<4) 16 8"

2, Arandom process gives measurements X between 0 and 1 with a probability
density function

f(x)=122-212+ 10x, 0s x< 1
= 0, elsewhere
(i) FindP(X< 1) andP(X> %)
(ii) Find a number k suchthatP (X< k)= %
Awms. (i) N6, N6, (i) k= 0-452.
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3. Show that for the distribution

. Ix- bl

dr-y.[l— a ]dx,b—a<x<b+a
= 0, otherwise,

Yo= % , mean = b and variance = a*/6

4. A ray of light is sent in a random direction towards the x-axis from a
station Q (0, 1) on the y—axis and the ray meets the x-axis at a point P. Find the
probability density function of the abscissa of P.

[Calcutta Univ. B.Sc.(Hons.), 1982]
. 5. LetX be acontinuous variate with p.d.f. !
f(x)=k(x-2); a<x<b,k>0
What are the possible values of a and b and whatis k ?
[Delhi Univ. B.Sc.(Maths Hons.), 1989]

6. Pareto distribution with parameters » and A is given by the probability

density function

f(x)=rA"’ ,lu , for x2A
x

=0,x<A,r>0
Show that it has a finite nth moment if and only if n < r. Find the mean and
variance of the distribution.

7. For a continuous random variable X, defined in the range (0< x< ),
the probability distribution is such that

P(X<x)=1- e’”‘z. where B >0
Find the median of the distribution. Alsoif m , m, and & denote the mean, mode
and standard deviation respectively of the distribution, prove that

2m:- m*=o* and m,= mV%
What is the sign of skewness.of the distribution ?

8. (a) Two dice are rolled, S= {(a,b) la,b=1,2...,6}.LetX denote
the sum of the two faces and Y the absolute value of their difference, i.e., X is
distributed over the integers 2, 3, ...., 12and Y over 0, 1,2, ..., 5. Assuming the
dice are fair, find the probabilities that (i) X= SNY= 1, (i) X=TNnY¥Y2> 3,
(iii)X=Y, and (iv) X+ Y=4NX-Y=12."

Ans. (i) V8, (i5) W, (iii) 0 and (iv) WAs.

9. The joint probability density function of the two-dimensional variable
(X,Y)is of the form

f(x,y)=ke¥?  0< y<x<oe
= 0, elsewhere
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(i) Determine the constant k. (i) Find the conditional probability density
tunction f; (x|y) and (iii) Compute P (Y 2 3).
[ Sardar Patel Univ. B.Sc., 1986 ]
.- (iv) Find the marginal frequency function f; (x) of X.
(v) Find the marginal frequency functionf, (y ) of Y.
(vi) Examine if X, Y are independent.
(vii) Find the conditional frequency function of Y givenX = 2.
Ans. () k=1, (i) fi(x|y)=.¢€", Gii) €.
10. Let

A Ay
(Jra-py=&3E
f(x,y)= o A o
R ) ;x=0,1,2,..; y=0,1,2,...; withy> x
0, elsewhere
Find the marginal density function of X and the marginal density function of Y.
Also determine whether the random variables X and Y are independent.

(I.S1., 1987)
11. Consider the following function :

e’ 0,1,2
f(x|y)=[ x! ox— 9 Ry &y coe
0, otherwise

(i) Show that f(x|y) is the conditional probability function of X given Y ;
y2 0.

(ii) If the marginal p.d.f.of Y is

_faer, x>0.
f’(’)“{o X< 0. 4> 0

what is the joint p.d.f.of X and Y ?
(iii) Obtain the marginal probability function of X.
[Delhi Univ. M.A .(Econ.), 1989]
12. The probability density function of ( x; , %, ) is given as
. 91 eze'°“"°"‘ if X1 ,%>0
flxn,x)= {0 otherwise .
Find the densny fui:ction of (y1,y2 ) where

Nn= -zxﬁ+ 1, v2= 3x+ x2 almost everywliere.
2

) {Punjab Univ. M.A.(Econ.), 1992]
13. (a) Let X, , X5 be a random sample of size 2 from a distribution with
probability density function,

f(x)=€",0<x<e
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= 0, elsewhere
Show
Yi= Xi+ X, and Yp= - ‘
‘e R i : xl + x2
are independent. [Sardar Patel Univ. B.Sc., Sept. 1986]

(b) X, . X2, X5 denote random sample of siz¢ 3 drawn from the distributic_)n:
f(x)=¢€",0<x<e -
= 0, elsewhere

Show that
_ X] _ X] + Xz _
YJ&"" m— v Xz— m and Y;— X|+ X1+ X;
are mulually independent.

14. if the probability densny function of the random varaibles X and Y| Xis
givenby '

, _Jet, x20
fix)= {O' , elsewhere
£X 50
0 , elsewhere'
respectively, find the probability density function of the random variable Y. .

{Jiwaji Univ. M.Sc., 1987]
15. ¢a) The random variable X and Y have a jointp.d.f.f(x,y) given by
f(x,y)=g(x+y), x>0,y>0
=0, otherwise.

Obtain the distribution, function /H(z) of Z= X+ Y and hcrice show that its
pdf.is

and frix(ylx)=

h(z)=2g(2), 2> 0 .
=0 2<0. N
(b) The joint density function of two random variables is given by

f(x,y)=€*" s x>0, y> 0.Show that the p.d:f. of

g _ X+
U="

is g(u)=due®™

[Calicut Univ. B.Sc., 1986]"_
16 The time.X taken by a garage to repair a car is a continuous, random ,
variable with' probability density function
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filx)= ‘%x(Z-— x), 0sx<2
A =

If, on leaving his car, a motorist goes to keep an engagement lasting for a time
Y, where Y is a continuous random variable, independent of X, with probability
function .

0, elsewhere

s_ 13y 0%ys2
£O )':‘l : 0, elsewhere;
*determine the probability that the car will not be ready on his return.
[Calcutta Univ. B.A. (Hons ), 1988]
17. If x and Y are two independent random vanablos such that
,f(x)= g , x>0 and g(y)=3e%,y20;
find the probability distribution of Z= X/Y.
{Maduraj Univ. B:Sc., Oct. 1987}

18 The random variables X and Y are independent and thelr probability
density functions are, respectively-given by

1 1
0y

Find the joint probability density of Z and W whereZ= XY andW= X,
Deduce the probability density of Z.. {Calcutta Univ. B.Sc.(Hons.), 1985]

2
v, Ixl< I and g(y)=ye"’2 ,¥>0.





